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ABSTRACT 

ANALVSBS O F  PLATE STRUCTURES BY A 

D U A L  F l N l T E  ELEMENT M E T H O D  

by 

PETER KEI-KIN HO 

A dual f i n i t e  element method i s  developed for  the analysis of the 
stretching and bending of l inearly e l a s t i c ,  orthotropic plates.  This 
f i n i t e  element method i s  based on the duality that  exis ts  between the 
problems of plate stretching and bending. Nodal displacements are the 
unknowns in the stretching problem while nodal s t ress  functions are  
those in the bending problem. A variational principle i s  used in for- 
mulating the governing system of equations. The boundary conditions 
considered are  those of s t ress ,  displacement, mixed, e last ic , ,  edge beam, 
and s t ra in  in stretching; and those of displacement, s t r e s s ,  mixed, and 
s t ress  function in bending, 

The f i n i t e  element method i s  implemented into a computer system 
named the PLANAL System, representing the Plate Analysis Language. The 
PLANAL System i s  developed as a subsystem of the Integrated Civil Engi- 
neering System (ICES). A user 's  manual and examples of application of 
PLANAL are  included. Results from the examples a re  in close agreement 
w i t h  theoretical values. 
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NOTATION 

Important symbols used in th i s  work are  1 isted below. (The symbols 
( S )  and (B) re fer  to  the stretching and bending problems, respectively.) 

ai  = component along x-axis of oriented side i of triangu- 
l a r  element; 

B = boundary term i n  potential energy (S);  
5' , B" = boundary terms in complementary potential energy ( B ) ;  

bi  = component along y-axis of oriented side i of triangu- 

1 a r  el ement ; 

Dx' Dy = flexural r ig id i t i e s  (B); 
E = moduli of e l a s t i c i ty ;  Ex' y 

G = shear modulus; 
h = plate thickness; 

i ,  j 9  k = unit  vectors along the coordinate axes; 
K = coefficient matrix of system equations; 

K = noncompatible curvatures i n  y- and x-directions, re- Kx' y 
spectively, associated w i t h  particular solution of 
equil i b r i u m  equations, Eqs. (1.33), or particular 
solution functions ( B ) ;  

l i  = length of side i of boundary; 
M = E q .  (1.50) (5) ; 

M n x y  Mny = components of s t ress  couple vector a t  boundary (5) ;  

Mx' Mxy9 Myx' My = s t ress  coup1 es (B) ; 
M;, Mi = i n i t i a l  s t ress  couples due to  thermal causes (B); 

Nn = edge load vector; 

Nnx, Nny = components of s t ress  resultant vector a t  boundary (S) ;  

N;, N i  = i n i t i a l  s t ress  resultants due to  thermal causes (S); 
n = subscript associated w i t h  direction normal to  the 

boundary equations (B) ; 



P = generalized force matrix (S), or generalized rota- 
t ion matrix (B); 

p = surface l oad vector; 

P = potential energy density of surface load (S);  
P"  = term in complementary potential energy ( B ) ;  

p = superscript associated w i t h  particular solution of 
equilibrium equations (B); 

px, p , pz = components of surface load; 
Y 

Qn = transverse shear a t  boundary ( B ) ;  

Qne = effective transverse shear ( B ) ;  

Qx, Q = transverse shears (B); 
Y 
q = surface load intensity (B); 

Rxi Ryi = generalized force components a t  node i due to  edge 
loads of one triangular element (S); 

' R '  = generalized rotation components a t  node i due to edge Rxi5 yi 
curvatures of one triangular element (B) ; 

s = arclength of boundary or subscript referring thereto; 
LB = displacement matrix ( S ) ,  or s t ress  function matrix 

( B ) ;  
u = displacement vector; 

U, V = s t r e s s  functions ( B ) ;  
U i ,  V i  = U and V a t  node i ( B ) ;  

u ,  v = displacement components (S);  
u i ,  v i  = u and v a t  node i ( S ) ;  

W = s t ra in  energy density of plate (S) ; 
W' , W" = complementary s t ra in  energy density of plate (B); 

w = deflection of plate ( B )  ; 

x, y = Cartesian coordinates i n  middle plane of plate; axes 
of e l a s t i c  symmetry of orthotropic triangular ele- 
ment; 

E E x '  X ~ " ~ X )  Ey = 1 inear components of s t ra in  (S); 

'xi' OYi = generalized force components a t  node i due to thermal 
effects in one triangular element ( S ) ;  



@ L i ,  9 '  = generalized rotation components a t  node i due to 
yi 

thermal effects  i n  one triangular element ( B ) ;  

"x3 "y = Poisson rat ios;  
E l ,  E2,  E3 = tr iangular coordinates; 

n = potential energy of plate (S) ;  

n ' ,  Ill' = complementary potential energy expressions of plate 

(B); 
x i ,  x = thermal curvatures ( B ) ;  

xx3 Xxy3 Xyx9 xy = curvatures and twist  o f  plate (8) ;  
Qi = defined in Eq .  (3.67) (B); and 
* = superscript associated with the solution of the homo- 

geneous equilibrium equations, i .e . ,  w i t h  the portions 
of the force quantit ies obaained through the s t ress  
functions (B). 



The f i n i t e  element method has been the subject of considerable re- 

search ef for t  i n  structural mechanics i n  recent years. In th i s  method, 
a continuum i s  represented by a number of elements joined together a t  a 
number of nodes and along interelement boundaries. Variational princi- 
ples or other methods may be applied in formulating a system of equa- 

t ions describing the problem. In a displacement method, displacement 
quantit ies a t  the nodes are  chosen as the unknowns of the equations; 
whereas in a force method, force quantit ies are  chosen. 

Displacement methods are  used extensively i n  the analysis of plate 
and she11 structures.  In the problem of plate stretching where two dis-  
placements per node are the unknowns, satisfactory resul ts  are reported 
by Clough [ Z ]  ,t using triangular elements and 1 inear displacement func- 
t ions.  However, in the problem of plate bending where three displace- 
ments per node are  the unknowns, some d i f f i cu l t i e s  seem to  ex is t  i n  

obtaining equally satisfactory resul ts  [I ,2,3,26]. 
Force methods have, on the other hand, received relat ively l i t t l e  

attention. A s t ress  method has been presented by De Veubeke [7] and 
mixed methods by Herrmann [ I 2 1  and Prato [20]. &cognizing the mathe- 
matical duality that  exis ts  between the problems of stretching and 
bending of plates, a f i n i t e  element method i n  bending using s t ress  func- 
t ions as unknowns i s  presented by Elias [9]. 

A s t i f fness  method for  the stretching problem w i t h  unknown in-plane 
displacements can be interpreted as the dual of a f l ex ib i l i t y  method for  

the bending problem with unknown s t ress  functions. Similarly, a s t i f f -  
ness method for  the bending problem w i t h  an unknown deflection i s  the 
dual of a f l ex ib i l i t y  method for  the stretching problem w i t h  an unknown 
Airy's s t ress  function. Making use of th i s  duality,  a f i n i t e  element 

t Numerals i n  brackets refer  to  i tems i n  the References. 
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method using s t ress  functions fo r  the analysis of plate bending has the 

same behavior as the method using in-plane displacements for  the analy- 

s i s  of plate stretching. The dual s t ress  function method i n  plate ben- 
d i n g  has been shown by E l  ias [9,10] to produce satisfactory resul ts .  

I t  has been shown tha t  the displacement method and the s t r e s s  func- 
tion method provide, respectively, lower and upper bounds to  the deflec- 
t ion of a plate i n  bending [lo]. This provides a method for  evaluating 
the deviation of f i n i t e  element solutions from an exact solution. 

In the bending problem, the s t r e s s  function method involves two un-  
knowns per node, whereas the displacement method involves three unknowns 
per node. This resul ts  i n  a s ignif icant  difference i n  computation 
e f fo r t  i n  solving the governing system of equations. 

In the present work, the dual f i n i t e  element method (displacement 
method in stretching and s t ress  function method in bending) for  the ana- 
lys i s  of plate structures i s  presented in Chapters l ,  2 ,  and 3 .  The 
method i s  implemented into a computer system called the PLANAL System, 
representing Plate Analysis Language. The system i s  developed as a sub- 
system of the Integrated Civil Engineering System (ICES). Implementa- 
tion logic, a user 's  manual, and examples of application of the PLANAL 

System are  presented i n  Chapters 4, 5, and 6. Documentation and l i s t ing  
of computer programs i n  the system are included in the appendices. 



CHAPTER 1 

DUALITY I N  STRETCHING AND BENDING OF 

ORTHOTROPllC PLATES 

1.1. introduction. 

The bas ic  equations and v a r i a t i o n a l  fo rmula t ions  o f  the  problems o f  

s t r e t c h i n g  and bending o f  a p l a t e  are  presented i n  t h i s  chapter. It may 

be noted from the bas ic  equations t h a t  d u a l i t y  e x i s t s  between the two 

probl  ems. 

Throughout t h i s  work, the r ight-handed Cartes ian coordinate system 

(x, y, z )  i s  adopted. The middle sur face o f  the  undeformed p l a t e  i s  

assumed t o  l i e  i n  the  xy-plane. U n i t  vectors along the  x-, y-, and z- 

axes a re  denoted by i , j , and k , r e s p e c t i ~ e l y ~ t  

D i f f e r e n t i a t i o n  w i t h  respect  t o  an independent v a r i a b l e  i s  i n d i -  

cated by a comma fo l lowed by t h a t  var iab le ,  f o r  example, 

- a f  f - -  
,S as*  

1.2. Basic Equations. 

Presented i n  t h i s  sec t i on  are  the bas ic  equations which descr ibe 

the  s t r e t c h i n g  and bending o f  a t h i n  p l a t e  under the  am& d e f l e c t i o n  

theory.  These equations are  reduced from the general equations i n  th ree  

dimensions by neg lec t ing  the  extensional  s t ress  normal t o  the  p l a t e  and 

i- Depending on the  context ,  boldface types here denote vectors.  
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adopting Kirchhoff's hypothesis concerning the deformation of normals to  

the plate. The material of the plate i s  considered to  be l inearly elas- 

t i c  and orthotropic ( i . e . ,  there a re  two orthogonal planes of e l a s t i c  
symmetry normal to  the plane of the p la te ) .  

Equilibrium Equations. 

Consider a thin plate in equilibrium (Fig. 1 . I )  under a surface 

load of vector intensity 

P = p X i  + p Y j  + p Z k  (1 .1 

and an edge load of vector intensity 

N , = N  nx i + N  j + Q n k .  
"Y (1.2) 

The d i d d a e W  equa;tionn 06 e q W b t t i w n  of the plate may be written in 
the form 

N + N  x,x yx,y + px = 0, 

N + N = 0, (1 *3)  
X Y 9 X  Y , Y + P ~  

Nw - Nyx = 09 

J 
X 

Fig. 1.1. A thin plate in equilibrium under surface and edge loads. 



and 

where N,, , N are  the in-plane s t ress  resultants,  Q,. Q the Nxy3 Nyx y Y 

transverse shears, and M x ,  Mxy ,  Myx,  M the s t ress  coup1 es ( F i g .  1 .2) .  

I a different ial  

Fig. 1 . 2 .  Definition of s t ress  resultants,  transverse shears, and s t ress  

couples acting on a different ial  plate element. 



I t  can be seen tha t  the in-plane s t ress  resultants i n  (1.3) a re  unwu- 
pled from the transverse shears and s t r e s s  couples i n  (1.4). Thus ,  
(1.3) are  the equil i brium equations of the n ~ e t c k i n g  problem, and (1.4) 
a re  those of the bending problem. 

Stress-strain Relations. 

The displacement vector of the plate i s  defined as 

In the b%m?kking problem, the generalized s t ra ins  are  cX, E , and 
Y 

I - which are  defined by = €yx = Tfxy - 7Yyx 

The general ized s t ra ins  a re  related to  the general ized s t resses  (in- 
plane s t ress  resul tants)  through the akrtan-na?dn rrel2uXon.b 

where E; and E O  are  i n i t i a l  s t ra ins  due to  temperature change, and h i s  
Y 

the thickness of the plate. The coefficient matrix in (1.7) i s  symmet- 
r ical  ; hence, 

The e l a s t i c  constants are  Ex, E , vx, v and G where Ex, E a re  the 
Y Y Y 

Young's moduli i n  the x-, y-directions, respectively; vx, v Y Poisson's 

ra t ios  i n  the x-, y-directions, respectively; and G the shear modulus. 
As a resul t  of (1.8), there are  only four dh;tinc/t e l a s t i c  constants in 



an orthotropic plate.? The inverse relations of (1.7) are  

In the bending problem, the generalized s t rains  are xx, xy, and 

- - 
Xxy Xyx which are  defined by 

The s t ress  couples and transverse shears can be expressed i n  terms of 
two s t ress  functions U and V i n  the form 

The general ized stresses (the s t ress  couples) a re  related t o  the general- 
ized s t rains  through the a;t'tua-akarain .FL 

where M; and M0 are i n i t i a l  s t ress  couples due to temperature change. 
Y 

The inverse relations of (1.12) are  

t For solids i n  k h e e  dimensions, there are,  i n  general, 21 dis- 

t i n c t  e l a s t i c  constants in an anisotropic material, and nine d i s t inc t  
e l a s t i c  constants i n  an orthotropic material. 



If we define 
EXh3 - - 

Dx 12(1-v v ) '  
x Y 

where Dx and D a re  flexural r ig id i t i e s  of the plate, then (1.12) can be 
Y 

expressed i n  the form 

Compatibility Equations. 

In the n;ttreX&Lng problem, the compatibility equations are  



where 

- 1 - u 1, X y ~ - T ( ~ , x y  $yy 

- 1 
xxz - Z (V ,XX - u ) .  

,YX 

In the bending problem, the compatibility equations are  

x ~ , x  - X x ~ , ~  = 0, 

Xyx,x - Xx,y = 0. 

1.3. Stretching-Bending Duality. 

As shown i n  the l a s t  section, the basic equations of the plate sep- 
a ra te  into two uncoupled systems: the stretching and the bending prob- 
lems. There i s  a duality between the two systems of equations which i s  
a particular case of the static-geometry analogy of shell  theory where 

i t  i s  established, however, for  zero surface load [8]. To include the 
case of non-zero surface load, there i s  more than one way that  the anal- 
ogy may be made. For th i s  purpose, the superscript * will denote quan- 
t i t i e s  associated w i t h  the homogeneous solution of the equilibrium equa- 
t ion. 

For example, (1.3) in stretching with load terms deleted has the 
same form as (1 . I $ )  i n  bending. On the other hand, (1.4) i n  bending 
with load terms deleted has the same form as (1.16) i n  stretching. 

I t  may be seen tha t  the basic equations of the stretching problem 
can be transformed into the basic equations of the bending problem, and 
vice versa, by interchanging dual dependent variables and certain forms 
of the e l a s t i c  constants i n  the two problems. The stretching-bending 
duality i n  the basic equations are  tabulated i n  Table 1 . l . t  The dual 

t In Tables 1.1 and 1.2, the solution of the homogeneous equilib- 

rium equations i n  bending i s  taken. Hence, the dependent variables with 

superscript * are  associated w i t h  the portions of the force quantit ies 

obtained through the s t ress  functions. See Reference [8] for  a f u l l  

l i s t i ng  of duality in the basic equations. 
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Table 1 . l .  Stretching-Bending Duality i n  the Basic Equations. 

Bendi ng Problem 

Compatibility Equations (1.16) : Equilibrium Equations (1.4) : 

Stress-s t ra in  Relations (1 .I 5) : 

Ml - P$ = DXxi + vXDXx;, 

M* - M0 = v  D X* + D x*, 
Y Y Y Y X  Y Y  

1 
E = Eyx = 2 (uSy + V , X ) ~  M = Myx 

1 
XY XY 

+ v = - 2 (Uyy y 

1 - )Y x r z = Y ( " y x y  ,yy - u,YY)' 

- 1 
xXz - b x X  - tJ YYX 1- Q; = - 7 (Vyxx - Uyyx).  

1 



Table 1.2.  Stretching-Bending Duality in the Dependent 
Variables and Elastic Constants. 

dependent variables and the dual e las t ic  constants are I isted i n  

Table 1.2.i 

1.4. Variational Formulation of the Stretching Problem in Terms 
of the Displacements. 

Consider a plate in equilibrium under surface load components p, and 

i See the previous footnote. 



p and edge 1 oad components Nnx and N (Fig. 1 . 3 ) .  The plate i s  con- 
Y nY 

sidered to  be 1 inearly e l a s t i c  and orthotropic. The s t ra in  energy den- 

s i t y  function W has the form 

E E h  
w=* 

+ 2 ~ h ~ ~  + No& + N O E  (1.19) 
XY x x  Y Y '  

N; and N o  a re  i n i t i a l  s t r e s s  resultants related to thermal s t ra ins  E; 
Y 

and E: through the relations 

Fig. 1.3. Stretching o f  a plate under surface and edge loads. 



The potential energy due t o  surface load i s  //P dA, where 

P = - pxu - Py" * 

The potential  energy due t o  edge load i s  9 B ds ,  where 

B = -  NnXu - N V .  (1.22) 
nY 

Therefore, the potential energy of the  pla te  takes the form 

The above functional can be expressed i n  terms of the  displacements 
through strain-displacement re la t ions .  

The princi pl e of s ta t ionary potential energy (sometimes known as 
the principle of v i r tual  displacements) requires the f i r s t  variat ions of 
the functional n with respect  t o  the displacements t o  vanish. That i s ,  

the displacements s a t i s f y  the  variat ional  equation 

1.5. Variational Formulation o# the Bending Problem in Terms of 
Stress Functions. 

Consider a pla te  i n  equilibrium under a surface load component p,, 

an edge load component Qn,  and a s t r e s s  couple a t  the  boundary of vector 
in tens i ty  

M n = M n x i  + M  j .  (1.25) 
nY 

The pla te  i s  again considered t o  be l inear ly  e l a s t i c  and orthotropic.  
The complementary s t r a i n  energy density function W '  has the form 



xi and x0 a re  thermal curvatures r e l a t e d  t o  i n i t i a l  s t ress  couples M i  
Y  

and MO through the  r e l a t i o n s  
Y  

The complementary p o t e n t i a l  energy due t o  edge l o a d  i s  B'ds, 

where 

B 1 = - M w  + M w  - Q n w .  
n x , y  n y , x  (1.28) 

I n  a  manner s i m i l a r  t o  t h a t  i n  t he  preceding sect ion,  the  v a r i a -  

t i o n a l  fo rmula t ion  i n  the  form 

6 n 1 =  o (1.29) 

w i t h  respect  t o  t he  s t ress  funct ions i s  obta ined where 

To a r r i v e  a t  a  form o f  t he  v a r i a t i o n a l  fo rmula t ion  which i s  com- 

p l e t e l y  dual o f  t he  s t r e t c h i n g  problem, we proceed as fo l lows.  

The s t ress  couples and t ransverse shear i n  (1.26) and (1.28) must 

s a t i s f y  the  e q u i l i b r i u m  equations (1.4). This i s  accomplished by w r i t -  

i n g  the  general s o l u t i o n  o f  (1.4) as the  superpos i t ion  of a  p a r t i c u l a r  

so lu t i on ,  denoted by the  supersc r i p t  *, o f  t he  corresponding homogeneous 

system. 

= MP + M* 
Mxy xy xy' 



From (1.11), t he  homogeneous s o l u t i o n  i s  expressed i n  terms of t he  

s t ress  func t ions ,  thus 

M: = v,y9 

M; = U9,, 

For convenience, the  p a r t i c u l a r  s o l u t i o n  can be taken i n  t h e  form 

i n  which two pahticueah n u W o n  ~unotiovla Kx, K  have been introduced. 
Y  

Comparing (1.33) w i t h  (1  .I 5) ,  i t  can be seen t h a t  - K  and -Kx are  curva- 
Y  

t u r e  quan t i t i es ,  and a r e  indeed the  curvatures i n  t he  x-  and y -d i rec t i ons ,  

respec t i ve l y .  

Eqs. (1.33) s a t i s f y  t h e  f i r s t  two equations o f  (1.4) i d e n t i c a l l y .  

To s a t i s f y  t h e  t h i r d  equat ion o f  (1.4), Kx and K  must s a t i s f y  t h e  d i f -  
Y  

f e r e n t i a l  equat ion 

Eqs. (1.31), (1.32), and (7.33) a re  then s u b s t i t u t e d  i n t o  (1.26), 

(1.28), and (1.30). A f t e r  use o f  Green's theorem i n  t he  area i n t e g r a l ,  

i n t e g r a t i o n  by p a r t s  i n  the  boundary i n t e g r a l ,  and d e l e t i o n  o f  non- 

va ry ing  terms, we o b t a i n  t he  f u n c t i o n a l  



where 

The pri nci pl e of compl ementary potential energy (sometimes known as  
the principle of virtual forces) requires the f i r s t  variation of the 
functional n" w i t h  respect to  the s t ress  functions to  vanish. That i s ,  
the s t ress  functions sa t i s fy  the variational equation 

6n" = 0. (1.39) 

To obtain the s t ress  couples and curvatures i n  the bending problem, 
we procede as follows. 

F i r s t ,  an appropriate choice of Kx and K i s  made (Section 1.6).  
Y 

Then s t ress  functions U and V are obtained from (1.39). The s t ress  

couples M;, Mi, M;y and M ~ ,  M ~ ,  M~ are  computed through (1.32) and x Y XY 

(1 .33), and then sumned as i n  (1 .3l)  . Curvatures x;, x*, x ; ~  are de- 
Y 

fined i n  terms of M;, M;, M* by means of the s t ress-s train relations 
XY 

1 3 Curvatures x,, x , xXy are then obtained through 
Y 

1.6. Determination of a Particular Solution of the Bending Problem. 

In solving the bending problem involving a surface load, i t  i s  
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necessary to determine a particular solution of the bending equilibrium 

equation i f  the method of stretching-bending duality i s  to be applied. 

A particular solution has to sa t i s fy  only the equilibrium equation and 

i t  does not have to  sa t i s fy  the boundary conditions of the problem under 

consideration. I t  may be expected, however, that  the closer a particu- 

l a r  solution compares with the actual behavior, the more accurate i s  the 

f i n i t e  element solution to the problem. 

A particular solution may be determined in the form of two particu- 

l a r  solution functions Kx and K introduced in (1.33), which must sa t -  
Y' 

i s fy the governing different ial  equation (1.34). Several schemes by 

which particular solutions may be determined are  discussed below. 

1. Determination of K, and Ky by  Fourier Series. 

In th is  scheme, certain limi ations on the geometry and material 

properties of the plate are adopted. Only rectangular plates are  con- 

sidered, and the plate material i s  assumed to be isotropic,  so tha t  Dx 

= D = D and vx = v = v. The surface load pZ i s  assumed to be express- 
Y Y 

ible  in the form 

where c l ,  c2, and c are  arbi t rary constants. 3 
Using the simplification of 

E q  . (1 .34) becomes 

" z 
A K  = Do' 

where A  i s  Laplace's operator. 
Each term of the right-hand member in (1.41 ) i s  expressed as a 

Fourier ser ies  by standard procedure [14]. If the center of the plate,  

with dimensions 2a by Zb, i s  located a t  the origin of the coordinate 

system (Fig. 1 .4) ,  then the terms of the right-hand member in (1.41 ) can 

be expressed in the forms 
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be expressed i n  t h e  forms 

1 ~ T T X  - s i n  - m n a cos p, 

8c2b odd w n+2n+l 

C2Y = 7 c c 2 1 m n 
mirx s i n  y9 - cos - 2a (1.44) TT m n=l  

1 mTTx - cos - m n 2a cos !$?-'. 
S u b s t i t u t i n g  (1.44) i n t o  (1.43) f i n a l l y  leads t o  

where 

odd 

K1 
TT 

4 
m=l n 

rnnx s i n  - a cos 9% 

K2 
mTTx cos - 2a s in?% (1.46) 

cos cos 

2. Determination of Kx and Ky by Strips. 

The s t ress  couples and transverse shears o f  t he  p a r t i c u l a r  s o l u t i o n  

def ined i n  (1.33) a re  the  i n t e r n a l  forces t h a t  would occur i f  the  p l a t e  

i s  imagined t o  be comprised o f  two f a m i l i e s  o f  s t r i p s  p a r a l l e l  t o  the  

coordinate axes 191. I n  t h i s  scheme, the  l oad  p, may be subdivided a r -  

b i t r a r i l y  between the  two f a m i l i e s  o f  s t r i p s  which behave independently 



of each other. The end conditions of the s t r ip s  may be arbi t rary.  To 
obtain a def ini te  particular solution, the boundary conditions of the 

s t r ip s  and the portion of load pZ carried by one family of s t r ip s  must 

be specified. If c(x,  y )  i s  the portion of load carried by the s t r ip s  

parallel to  the x-axis, (1.34) may be replaced by the two equations 

Once Kx and K are  solved, the dual stretching problem i s  well defined. 
Y 

As an example, consider the plate in Fig. 1 .4  to  be a homogeneous 
and isotropic plate with a uniform load p,. For simp1 i c i ty ,  we take the 

case of c = 1,  which means that  only the family of s t r ip s  in the x- 

direction exis ts .  E q .  (1.47) may be sa t i s f ied  by le t t ing  

Fig. 1.4. Center of a rectangular plate located a t  the 

origin of the coordinate system. 



By taking the  s t r i p s  a s  simply supported, we have 

The par t i cu la r  solution i n  (1.48) and (1.49) i s  t h a t  of cylindrical  

bending i n  the x-direction. 

3. Determination of Kx and Ky by a Finite Element Method. 

In t h i s  scheme, a par t i cu la r  solution i s  determined through a f i n i t e  

element method using one unknown per node [lo]. By l e t t i n g  

the  equilibiium equations (1.4) becomes 

A variat ional  formulation -of (1.51) has the  form 

Eq. (1.52) may be used w i t h  an a rb i t r a ry  subsidiary condition specifying 

M a t  the boundary. 



CHAPTER 2 

F O R M U L A T I O N  BY THE FINITE ELEMENT M E T H O D  

2.1. Introduction. 

In the f i n i t e  element method, the body under study i s  discretized 
into elements and certain points in the body, known as nodes, are 
selected for  analysis. In the present work, the plate structure under 
study i s  subdivided into triangular elements and the nodes are  taken as 
the vertices of the elements. For the stretching problem, the unknowns 
are  the two in-plane displacements a t  each node; for  the bending prob- 
lem, the unknowns are  the two s t ress  functions a t  each node. 

The plate i s  taken to  l i e  on the xy-plane of a right-handed Carte- 
sian coordinate system. The material of the plate is considered to be 
l inearly e l a s t i c  and orthotropic. 

2.2. Triangular Coordinates. 

The selection of suitable displacement expansions i s  simplified 
considerably i f  one works with triangular coordinates t l ,  t2, and t3 
rather than w i t h  Cartesian coordinates [5,27]. Consider the triangl e 
shown i n  Fig. 2 .I . The nodes of the triangl e are  numbered 1 , 2 ,  and 3 
in the direction from x- to y-axis around tfie boundary,? and the side 
opposite to  node i i s  defined as side ( i ) .  

i That i s ,  the counter-clockwise direction i s  taken in a right- 
handed coordinate system, while the clockwise direction i s  taken in a 
1 eft-handed coordinate system. 

33 
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Fig. 2.1. Coordinates of a triangular element. 

Consider a point P inside the triangle.  Line segments joining the 
vertices and P divide the triangle into three subtriangles of area Al, 

A2, and A3 such tha t  

A1 + A2 + Aj = A, 

where A i s  the area of the triangle.  The triangular coordinates of P 
are  defined as the dimemicrde~n quantities 

I t  can be seen from (2.1) tha t  

El + E2 + E3 = 1. (2.3) 

If we take 12 and 13 as vectors oriented along sides (3) and (2), 
respectively, and recall  the definition o f  the vector cross product, the 
area i s  given by 

which leads to 



where xi and yi a re  the Cartesian coordinates of node i .  

By applying (2.4) t o  each of the subtriangles,  we obtain the re la -  
t i  ons between the t r iangular  and Cartesian coordinates : 

where 

a, = x3 - X 2 3  bl  = Y3 - Y29 C1 = X2Y3 - X3Y23  

a2  = X1 - X33 b2 = Y1 - Y39 C2 = X3Y1 - X I Y 3 ,  

a3 = X 2  - X I '  b3 = Y2 - Y l '  C3 = X1Y2 - X2Y1 3 

which a r e  obtained by cyc l ic  permutation of the subscripts  according t o  

1+2+3+1, e t c .  The quant i t ies  a i  and bi can be considered a s  the compo- 

nents of s ide  ( i )  of' the t r i ang le  taken as  a vector and oriented in the 
di rect ion from x- t o  y-axis. I t  can be noted from (2.3),  (2 .5) ,  and 

(2.6) t h a t  

al  + a2  + a3 = 0, 

bl + b2 + b3 = 0, 

C1 + c2 + c3 = 2A. 

Solving (2.5) f o r  x and y ,  we have the inverse re la t ions  

Expressions f o r  par t i a l  derivatives w i t h  respect  to  the Cartesian 

coordinates can be readily established.  For the f i r s t  derivative of 



By using two oblique coordinates, i t  can be shown tha t  the integral 
of f ( c l ,  t2, t3)  over the triangle i s  given by 

The resul ts  of the f i r s t  and second degree terms i n  ti are  l i s t ed  

below: 

2.3. Stretching of a Triangular Plate. 

An approximate solution of the problem of stretching of an element 
i n  the form of a tr iangular plate i s  now obtained by applying a d i rec t  
method to the variational equation (1 .24). 

Consider a tr iangular plate element in equilibrium (Fig. 2.2) under 
a surface load of vector intensity 

edge loads o f  vector i n  tensi ty  

t Unless otherwise s tated,  index i or j under a summation sign indi- 

cates tha t  the summation i s  to be taken over the subscripts 1, 2 ,  and 3 .  



N . = N . i  + N  j ,  
1 x 1 Y i i = 1 ,  2, 3, (2.13) 

concentrated nodal forces 

- Fi - F x i i  + F  j ,  
Y i 

i = 1 ,  2 ,  3 ,  (2.14) 

and a temperature change causing i n i t i a l  s t rains  E; and E O  which resu l t  
Y 

in i n i t i a l  stresses N i  and No given by (1.20). 
Y 

The displacement vector 

U ( X ,  Y )  = U ( X ,  Y )  i + V ( X ,  Y )  j (2.1 5)  

describes the displacement of a point on the middle surface of the ele- 

ment. The displacement components u and v are  sought as f i n m  functions 

of the coordinates, and the resu l t  i s  in the form 

where u i  and v i  are  the displacement components a t  node i. 

Fig. 2 .2 .  Loads and displacements of a triangular plate element. 



The s t ra ins  are  obtained by substi tuting (1.6) into (2.9), yielding 

I t  can be noted that  the s t ra ins  given above are  constant throughout the 

element, which i s  therefore called a conb;tan;t b&n element. 

The total  potential energy Il will now be expressed i n  terms of the 

nodal displacements. 

The potential energy due to  surface load, E q .  (1.21 ), takes the 

form 

where 

The potential energy due to  edge load, E q .  (1.22), takes the form 



where 

In (2.21), j refers  to  the two sides of the triangular plate intersec- 

t ing a t  node i .  On each side j, 1 .  i s  the length of the side and s is  
J j 

the arc-length oriented positively ;towand node i .  

The potential energy due to  concentrated nodal forces take the form 

The potential energy involving N i  and No Y in (1.19), a f t e r  using 

(2.17), takes the form 

where 

- i 
' x i  - Zi N; dA, 

The total  potential energy Il may now be written in the form 



In the case when px and p are  LLnm in x and y, tha t  i s ,  
Y 

the integrals in (2.19) may be expressed in terms of the nodal values 

Px i and py i9  i  = 1,  2, 3. The resulting expressions are  

Similarly, when Ni and N o  a re  thzm in x and y ,  the integrals i n  
Y 

(2.24) takes the form 

- i 
'xi No.<. dA = (Nil + N g p  + !Jig), YJ J 

where Nii and N o  a re  the values a t  node i .  
Y i  

The variational equation (1.24) yields a t  each node k the two equa- 

t ions 

Finally, using (2.25) in (2.29), we obtain for  the plate element 



t he  equ iL ibh iwn  equak iam 

The r igh t -hand members of (2.30) can be considered as genera l ized nodal 

fo rces  a t  node k. 

2.4. Assembly of the System of Equations. 

The system of equat ions governing t h e  s t r e t c h i n g  o f  a p l a t e  may now 

be assembled. For convenience, m a t r i x  n o t a t i o n  i s  used wherever appro- 

p r i  a te.  

F i r s t ,  the  equat ions f o r  a t y p i c a l  element n o f  t he  p l a t e  a re  as- 

sembled from (2.30). L e t t i n g  

U i =  { u i  v i / >  i = l , 2 , 3 ,  (2.31) 

t he  nodal displacements a r e  denoted by U1, U2, and Ug.t 

Edge loads and concentrated nodal fo rces  w i l l  be considered a f t e r  

t he  equat ions f o r  t he  e n t i r e  p l a t e  have been assembled. Thus, t he  

r igh t -hand members o f  (2.30) can be replaced by Pk, where 

t Depending on t h e  context ,  boldface types here denote matr ices.  



By introducing element s t i f fness  matrices k i j ,  (2.30) can now be 

written in the form 

where k i j  are  2 x 2 submatrices and have the form 

where i , j = 1 , 2 ,  3 .  The numerical values of ki are  element depen- 

dent, i .e., they depend on the geometric and materi a1 properties of a 

particular el ement. 

Next, an i l lus t ra t ion  for  a typical subassembly of elements inci-  

dent on a node i s  presented. Consider m elements with n nodes arranged 

and named as shown in Fig. 2.3. Using superscripts to  identify the ele- 

ments and subscripts to  identify the nodes, the equilibrium equations of 

elements 1,  2, . . . , m for  node 1 are 

F i g .  2.3. A typical subassembly of elements. 



Summing Eqs. (2.35) yields the equilibrium equations of the subas- 

sembly of elements for  node 1: 

Finally, the system of equations governing the plate can be assem- 

bled by applying (2.36) to a l l  of the n nodes of the plate. The nodes 
are  numbered, fo r  convenience, consecutively from 1 through n .  The dis- 

placements of a l l  the nodes i s  represented by 

Edge loads of an element are provided by the internal s t resses  from 

an adjacent element. Edge loads along the common edge of two elements 

are  equal and opposite for  the two elements. Therefore, fo r  a l l  inte- 

ri or edges, edge 1 oads do not contribute to the total  genera1 i zed nodal 

forces and are  not considered. Edge loads along exterior edges are con- 

sidered separately under s t ress  boundary conditions (Section 3.4) and 

are  negl ected here. 

Concentrated nodal forces are  not considered in (2.36) when the 

system of equations are  being assembled. They are added only a f t e r  the 

assembly has been completed so that  they are  considered only once. The 

concentrated forces a t  node k are defined by 

The assembled equations may be called, in the stretching problem, the 



global s t i f fness  equations. In matrix notation, the system of equations 
has the form 

K U  = P. (2.39) 

Eqs. (2.39) are  called system equations i n  l a t e r  discussion. In sub- 
matrix form, i t  can be written as 

The phocedwte for  assembly of K and P follows from (2.33) and 
(2.36) : 

1. Behone aaembly, K and P m e  nuRe mmathicen. 

2. Foh dement m, wiCh  aoda n l ,  n2,  n3: 

(1 ) . Add k{3) cvmplLted b y  (2.34) Xo aubmathix Kn i n  hypm- 
1 j 

how n i ,  hqpm-column n o h  K .  Repeat doh i ,  j = 1,  2, 3 .  
j 

(2) . Add q!m) compu*ed by (2.32) t o  toubmathix Pn i n  hqpm-how n i  
i 

Repeat Atep 2 doh evmy &ement i n  f ie p&zte. 

3. Foh node k ,  add l toubmmathix Pk i n  hqpm-now k oh  P. 

Repeat don & noden lCLiRh c o n c e ~ e d  $ohcen. 

I t  should be noted that  the system of equations (2.39) i s  singular, 
i . e . ,  there exis ts  a non-trivial solution U0 to  the system when P = 0. 

L B O  represents the nodal displacements of a rigid body motion. To f i x  

the plate against rigid-body motion, three independent displacement com- 
ponents must be specified, e.g., the two displacements a t  a node and 
the rotation about that  node. These displacement components must be 

specified in order to  solve the system. Once these are  specified, the 

system i s  modified according to  the a1 gori t h m  described under displace- 
ment boundary condition i n  stretching, and the resulting system becomes 
non-singular. 



2.5. Formulation tor the Bending Problem. 

The resul ts  obtained in Sections 2.3 and 2.4 are direct ly  applica- 

ble to the dual bending problem by means of the correspondence in Table 

1.2. Applying the stretching-bending duality to  (2.30), and neglecting 

Fxk and F yields for  the bending problem 
Y k ' 

where PAky  P I  Rig, R ' *  e i k 3  and e '  are dual of P x k ,  
Y k ' Y k ' yk Pyk '  R ~ k '  Ryk'  

' xky  and e respectively, and may be expressed through equations dual 
yk' 

of (2.19), (2.21), and (2.24). The right-hand members of (2.41) can be 

considered as generalized nodal rotations a t  node k .  

Assembly of the system of equations governing the bending of a 

plate i s  effected by applying the stretching-bending duality t o  the 

equations in Section 2.4. After material properties dual of those in 

bending have been replaced, the system of equations i s  assembled by the 

same procedure as used in the stretching problem. The assembled equa- 

tions may be called, in the bending problem, the global f l ex ib i l i t y  

equations. They are also called system equations in l a t e r  discussion. 

In computing the contribution of the particular solution functions 

of one element to  the generalized nodal rotations PAk and P i k  a t  node k ,  

the equati ons 



which a re  dual of (2.19) a re  used. Howewer, i n  the  schemes outlined i n  

Section 1.6, i t  is the  par t i cu la r  solution functions K, and K thern- 
Y 

selves t ha t  are  computed. I t  i s  possible t o  use Kx and K d i r ec t l y  i n  
Y 

the computation of PAk and P '  Using Green's theorem and (2.5),  (2.24) 
yk' 

becomes 

The t o t a l  generalized nodal rota t ions  GAk and G' a t  node k due t o  the  
.Yk 

pa r t i cu la r  solution functions a r e  obtained by superposition of PAk and 

P i k ,  respectively,  of the  elements having node k i n  common. 

A t  an i n t e r i o r  node, the  l i n e  in tegrals  i n  (2.43) add up t o  zero 

because E k  = 0 on the s ides  opposite t o  node k ,  and the  integrands take 

opposite values on s ides  common t o  the  t r iangular  elements. Therefore, 

where the summation extends over the elements having node k in comon. 

I t  can be shown t h a t  (2.44) can a l so  be used a t  a boundary node. 
Use of t r iangular  coordinates shows t h a t ,  f o r  example, 

where f i  is the  nodal value of a function f a t  node i .  I t  can be eas i ly  

proved t h a t  the  in tegral  of f over a t r iangular  element takes the  form 

(2.46) can be conveniently used i n  evaluating the in tegrals  i n  (2.44). 





Fig. 3.1. Example showing values a t  the negative 
and positive sides of a node. 

Boundary conditions are then imposed so that  def ini te  values of those 
constants can be determined. In a numerical method such as the one 
presented in th i s  work, boundary conditions are incorporated i n  the form 
of modi f i  cat i  ons of the system equations. 

The algorithms, or procedures, for  modifications applicable to  each 
of the boundary conditions considered are presented in the remainder of 
the chapter [9,19]. For c l a r i ty  and conciseness, matrix notation i s  
used wherever appropriate. However, some of the matrix mu1 tip1 i ca t i  ons 
indicated are  not carried out expl ici t ly  i n  the computer implementation 
for  the sake of e f f ic ien t  computations. The matrices i 2  and O2 stand 

for  the 2 x 2 u n i t  and null matrices, respectively. The symbol " -+ '" 
means that  the quantit ies on the l e f t  are  to  be replaced by the quanti- 
t i e s  resulting from the operations indicated on the r ight .  

3.2. Duality in Boundary Conditions. 

The s t re tchi  ng-bending duality applies t o  the boundary condi t i  ons 
of the stretching and bending problems as well as to  the i r  basic equa- 
ti ons . I t  can be seen that  a wider class of boundary condi t i  ons appears 
than i s  usual ly  considered i n  each of the two problems. 

The dual of s t r e s s  boundary conditions in the stretching problem 



are displacement boundary cond i t ions  i n  which curvature q u a n t i t i e s  have 

t o  be computed from the  prescr ibed displacement q u a n t i t i e s .  The dual 

o f  displacement boundary cond i t ions  i n  s t r e t c h i n g  are  s t ress  f u n c t i o n  

boundary cond i t ions  . For mixed boundary cond i t ions  i n  s t re t ch ing ,  the  

dual mixed boundary cond i t ions  requ i res  the  s p e c i f i c a t i o n  o f  a  s t ress  

f u n c t i o n  component and a  curva ture  i n  the perpendicular  d i r e c t i o n .  

E l a s t i c  i n  s t r e t c h i n g  i s  dual of edge beam i n  bending, whereas edge 

beam i n  s t r e t c h i n g  i s  dual o f  e l a s t i c  i n  bending. The dual of s t ress  

boundary cond i t ions  i n bending a re  s t r a i n  boundary cond i t ions  i n  whi ch 

the  extensional  s t r a i n  and the  in-p lane curva ture  o f  a  boundary curve 

a re  spec i f i ed .  The d u a l i t y  i n  boundary cond i t ions  and t h e i r  correspon- 

d ing  boundary values a re  l i s t e d  i n  Table 3.1 . 
The c o e f f i c i e n t  m a t r i x  of the  system equations i s  symmetric when 

i t  was assembled o r i g i n a l l y .  However, symmetry may be destroyed when 

the  equations are  mod i f ied  t o  incorpora te  c e r t a i n  boundary cond i t ions  . 
For example, i n  s t r a i n  boundary cond i t ions ,  c e r t a i n  rows i n  the  c o e f f i -  

c i e n t  m a t r i x  a re  replaced w i thou t  changing the corresponding columns. 

I n  Table 3.1, an a s t e r i s k  * i n  a  boundary cond i t i on  i nd i ca tes  t h a t  the  

c o e f f i c i e n t  m a t r i x  becomes non-symmetric, i n  general,  a f t e r  mod i f i ca-  

t i o n s  f o r  t he  boundary cond i t i on .  

3.3. Geometric Relations. 

Cer ta in  geometric r e l a t i o n s  requ i red  i n  subsequent sect ions are  

presented here. 

Tha~ndama ; t i an  ad Vedani l .  A vec tor  a t  a  node may have i t s  compo- 

nents referenced t o  a  l o c a l  coord inate system x* and y* which i s  d i f f e r -  

en t  from the  g loba l  coord inate system x  and y. The l o c a l  system a t  node 

i may be def ined by an angle mi measured from the  x-axis t o  the  x*-ax is  

(F ig.  3.2).  For example, t he  displacement components 

i n  the  l o c a l  system may be transformed t o  those i n  the  g loba l  system by 

the  re1  a t i  ons 
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Table 3.1. Stretching-Bending Dual i t y  in Boundary Conditions . 

Stress function 

- Xy' - " 9  - f s , 9  - f,, 

* Coefficient matrix becomes non-symmetric a f t e r  modifications 

for  boundary condition. 

where the rotation matrix a t  node i i s  given by 

S M n  and RoXatLon a& a Side. Consider 1 ine segment ( i )  of length 

li connecting nodes i and i+ l  represented by A and B ,  respectively, i n  



Fig. 3.2. Transformation o f  vec to r s .  

Fig.  3 . 3 .  The deformed segment i s  t r a n s l a t e d  t o  pos i t i on  A B '  . The 
s t r a i n  c i  and r o t a t i o n  wi of  t h e  s i d e  a r e  r equ i r ed .  For small deforma- 

t i o n s ,  BB '  may be taken a s  t h e  e longa t ion ,  (CD)/li a s  t h e  r o t a t i o n ,  and 

deformed s i d e  t r a n s l a t e d  

i 
s i d e  

Fig.  3 . 3 .  Computation of s t r a i n  and r o t a t i o n  of  a  s i d e .  



angle B'BE as ei. The o r i e n t a t i o n  angle $i of t he  s ide  i s  measured 

from the  x-ax is  t o  the  outward normal n of t he  side. Since 

BE = u ~ + ~  - ui, EB' = v ~ + ~  - vi , 

and s i n  Bi = cos $i, cos Bi = - s i n  $i, 

i t  can be shown t h a t  ei and wi a re  g iven by 

ci li = - ( ~ i + l  - ~ ~ ) s i n $ ~ + ( v  i +l - v ~ ) c o s $ ~ ,  (3.4) 

- 
wili - - (ui+, - ui) cos mi - ( v ~ + ~  - vi) s i n  Oi. (3.5) 

Cmvatutre at a Node. I n  the  f i n i t e  element method, a  curved bound- 

a ry  i s  considered t o  be comprised of a  number of l i n e  segments. The i n -  

plane curvature i n  t h i s  i d e a l i z a t i o n  does n o t  e x i s t  and must be i n t e r -  

preted ins tead as the  d i v ided  d i f f e r e n c e  between r o t a t i o n s  o f  two adja-  

cent  boundary segments. I f  sides ( i - 1 )  and ( i )  i n t e r s e c t  a t  node i , 
then the  in-p lane curvature a t  node i i s  g iven by 

3.4. Modif ication for Boundary Conditions in Stretching. 

The boundary cond i t ions  i n  s t r e t c h i n g  considered i n  t h i s  sec t i on  

are: s t ress ,  displacement, mixed, e l a s t i c ,  edge beam, and s t r a i n .  

1. Stress Boundary Conditions. 

It was s ta ted  i n  Sect ion 2.4 t h a t  edge loads along e x t e r i o r  edges 

are  considered under s t ress  boundary cond i t ions .  Edge load i n t e n s i t i e s  

Nx and N spec i f ied  on a s i d e  of l eng th  1 connect ing two nodes i and j 
Y 

(F ig .  3.4) c o n t r i b u t e  t o  the  general ized nodal forces Rai and Raj a t  the  



Fig .  3.4. Stresses s p e c i f i e d  on a  s i d e  a long t h e  boundary. 

nodes. From (2.21 ),  we have 

I 
Nas ds, 

where a = x, y,  If Na i s  a  1 i nea r  f u n c t i o n  i n  s, then (3.7) becomes 

where N:~ i s  t h e  va lue of Na a t  t he  p o s i t i v e  s ide  o f  node i and N- i s  
aj 

t h e  va lue o f  Na a t  t he  negat ive  s ide  o f  node j (Sect ion 3.1 ) . Na may 

be d iscont inuous a t  a  node as shown i n  Fig. 3.4. 

l n  khe ayntem equa;tiom, nubrna;DLic~n 

a re  added t o  Pi and P respec t i ve l y ,  f o r  every s ide  along the  boundary 
j ' 

w i  t h  s p e c i f i e d  s t ress  boundary condi ti ons . 



In the case when edge loads are  specified on the en t i re  boundary, 
a r igid body displacement i n  the form of three appropriate displacement 
components (Section 2.4) must be specified so that  the resulting coeffi-  
c ient  matrix will be non-singular. 

2. Displacement Boundary Conditions. 

If the displacements Vi are  prescribed a t  node i ,  then there a re  

two less  unknown nodal displacements. The two equilibrium equations 
associated w i t h  that  node can be deleted from the system equations.? 
Terms involving Ui  in the other equations of the system are  then trans- 
posed to  the right-hand members. 

The algorithm fo r  modifying the system equation fo r  node i i s  as 
fol 1 ows : 

3. Mixed Boundary Conditions. 

In mixed boundary conditions, one displacement component and an 
edge load component i n  a normal direction may be prescribed. The dis- 
placement component u r i  i s  taken a t  node i i n  a direction r .  The edge 

t During  assembly of the system equations, i f  those equations asso- 
ciated w i t h  prescribed displacements a re  assembled from the bottom up-  

wards, the coefficient matrix would remain "compact" a f t e r  those equa- 
tions have been deleted. 



t load component of magnitudes N- and N a t  the negative and positive 
9 9 

sides,  respectively, of node i may be prescribed i n  the direction q 

normal to  r (Fig. 3.5).  The direction of r a t  node i i s  given by an 

angle $i measured from the positive x-axis to  r , and q i s  taken to be 

~ / 2  radians ahead of r . 
E q .  ( 3 . 7 )  or (3.8),  with or replaced by q ,  are  used to compute N q i ,  

the generalized nodal forces contributed by N specified on the two 
9 

sides issuing from node i .  

The algorithm for  modifying the system equations for  node i i s  pre- 

sented below: 

1. Fow rna&icea E ,  C, ut, and NT given by 

X 

Fig. 3.5. To specify mixed boundary conditions. 



2. P and K m e  &en madidRed accarrdivrg t o  :t 
i (1) Pj +- P. - Kji R u*, 

1 
j i j = I, 2 . n (3.16) 

J 
i 

Kji +- K.. R E ,  
J 1 

j * 3 j = 1, 2, . n. (3.17) 

i (2)  Pi +- N * +  1 ER isT (P i  - K . . R  11 @t)+ 1 u:. (3.18) 

A f t e r  t he  system equations have been modi f ied,  t he  s o l u t i o n  o f  t h e  

equat ions w i  11 y ie7  d 

u; = { U r i  u  1 
q i 

(3.21) 

which a re  o r i en ted  i n  t he  l o c a l  axes de f ined  by Oi. The displacements 

Ui o r i e n t e d  i n  t he  g loba l  axes can be obta ined by us ing  (3.2). 

4. Elastic ebr~undcsry Supports. 

When a boundary i s  e l a s t i c a l l y  supported, t he  s t r e s s  r e s u l t a n t s  on 

the  boundary a r e  func t i ons  o f  t he  unknown nodal displacements along the  

boundary. I f  the  s t i f f n e s s  c o e f f i c i e n t s  o f  t he  e l a s t i c  suppor t  a re  kxx, 

kxy¶ kyxy and k then the  boundary s t resses N, and N a r e  g iven  by 
YY ' Y 

where us and vS a re  the  s p e c i f i e d  displacements o f  t h e  e l a s t i c  support .  

We now cons ider  t h e  e l a s t i c  edge st resses along a s ide  o f  l eng th  

connect ing two nodes i and j. Subst i tu t . ing  (3.22) i n t o  (3.7), t he  gen- 

e r a l i z e d  nodal fo rces  a t  t h e  two nodes can be expressed i n  t he  form 

t P. i s  mod i f i ed  be fore  Kji because Kji on t h e  r igh t -hand s ides 
J 

are  those bedom mod i f i ca t i on .  



where 

If kxx,  kxy, kyx, and k are  l inear  functions of s ,  then the 2 x 2 
YY 

e l a s t i c  s t i f fness  matrices are  given by 

i where kxx i s  the value of kxx a t  node i ,  and so for th.  I t  may be noted 

tha t  i f  kxy = kyx, then Sii. Si j ,  and 5 will be symmetric matrices. 
j j 

In (3.23), the terms involving the unknown displacements must be 
transposed to  the left-hand members of the system equations. 

For every side (connecting nodes i and j )  on e l a s t i c  boundary sup- 
port, the following modifications to  the system equations are  required: 



5. Plate Bounded by an Edge Beam. 

When a p l a t e  i s  bounded by an edge beam, the  s t r a i n  energy of the  

beam must be inc luded i n  the  t o t a l  p o t e n t i a l  energy o f  t he  p l a t e  g iven 

b by (1.23). The s t r a i n  energy W o f  t he  beam takes the  form 

where A i s  t he  cross-sect ional  area o f  t he  beam, I i s  the  moment o f  area 

about the cen t ro ida l  a x i s  normal t o  the  plane o f  the  beam, and E i s  

Young's modulus. Using piecewise l i n e a r  displacements and a piecewise 

constant  thermal s t r a i n ,  (3.28) can be expressed i n  the  form 

where i r e f e r s  t o  a boundary segment o f  length  l i ,  k r e f e r s  t o  a bound- 

a ry  node, and the  summations extend over a l l  the  segments and nodes 

along the boundary. 

We now in t roduce the  n o t a t i o n  

s i n  +i - 
i 

- 
li ' 

cos $i 
- 

i 
- 

'i ' 



Substi tut ing (3 .4) ,  (3 .5 ) ,  and (3.6) in to  (3.29) yie lds  

To simplify notation here, i t  i s  convenient to  name the boundary 

nodes by consecutive integers beginning w i t h  1 (Fig. 3 .6) .  Examination 

of (3.35) reveals t h a t  the coef f ic ien t  of a typical variable,  say, u3, 

i s  a  l inear  combination of the variables u l ,  u p ,  u3,  u4 ,  and u5.  Thus, 

b i f  we include W in II i n  E q .  (2.29), the two sums 

Fig. 3.6. Naming of nodes along an edge beam bounding a pla te .  



must be added to the left-hand members of (2.30a) and (2.30b), respec- 

t ively,  which corresponds t o  the equilibrium equations a t  node 3. To 
the right-hand members of the same equilibrium equations must be a d -  
&xc*ed the quantit ies F;3 and F0 respectively. The quantit ies men- 

~ 3 '  
tioned above are  defined by 



and 

+ d2f3252~g + d4f34s3xi. (3.39b) 

The quantit ies kg; and k ,  m = 1 ,  . .. , 5 can be obtained from (3.37) 

and (3.38) by interchanging x and y ,  and s n  and cn ,  n = 1,  ..., 4. 

We define the 2 x 2 edge beam s t i f fness  matrices as 

!53m = m = 1 ,  ..., 5. 

We a1 so define 

Then, don each t y p i c a l  node 3, 

1. I n  now 3 od K :  

K3m -+ K3m + 53m, m = 1 ,  ..., 5. (3.42) 

2. I n  now 3 06 P: 

P3 + 5 - F;. 

Repeat kGze above ;two ntepn don a& a;theh nodu dong  t h e  edge bem, 

~ i n g  ni.milan ~ W O M ,  w L t h  ;the nubacnipt and n u p m d p t  3 nephced 

by t h e  node i n  quu;t ion. 

6. Strain Boundary Conditions. 

Extensional s t ra in  E, and in-plane curvature xS are specified along 

a portion of the plate boundary under s t ra in  boundary conditions. The 

s t ra ins  are  specified for  each segment and are  given by (3.4); and the 

curvatures are specified a t  each node and are  given by (3.5) and (3.6).  



Let m be the total  number of nodes, including the end nodes, along 
the s t ra in  boundary portion; hence there are  2m unknown nodal displace- 
ments. One equation I i ke (3.4) can be written for  each of the m-1 seg- 
ments, and one equation 1 i ke (3.6) can be written for  each of the m-2 
nodes other than the end nodes. This resu l t s  i n  a total  of 2m-3 equa- 
tions. The remaining three equations required to  solve the s t ra in  
boundary portion are  supplied in one of two conditions: 

F i rs t ,  three components of a r igid body motion of the boundary 
portion may be specified ( i  . e . ,  two displacements a t  a node and the ro- 
tation of a segment). 

Secondly, two force resultants and a moment about some point of 

the boundary forces acting on the boundary portion may be computed to  
provide three scalar  equations. 

I t  may be noted that  the equations to  be assembled for  the s t ra in  
boundary portion are  compatibility equations or strain-displacement re- 
lations which are  to  replace the original equilibrium equations. This 

will resu l t  i n  certain rows being replaced without replacing the corre- 
sponding columns, and the coefficient matrix will become, i n  general, 
non-symmetric. 

We now number the nodes along the s t ra in  boundary portion consecu- 
t ively from 1 through rn i n  the positive s-direction, w i t h  segment ( i )  
following node i . E q .  (3.4) for  segment ( i  ) can be combined with (3.5) 

substituted in (3.6) for  node i ,, and the resul t takes the form 

where 
0 0 

J n  cos mn s in  4, 



For each of the m-2 nodes of the boundary portion other than the 

two end nodes, the original equilibrium equation i s  replaced by (3.44) 

written for  that  node. Consequently, 2m-4 scalar equations are obtained. 

I t  may be noted tha t  (3.4) written for  segment (1) i s  not included 

in the above equations, and i t  can be written in the form 

where 

"i = [sin $i 

The remaining equations required to solve the s t ra in  boundary por- 

tion are now considered. 

In the f i r s t  case when three components of a r igid body motion of 

the boundary portion are specified, the two displacement components given 

for  any node i are treated as in the case of displacement boundary con- 

dit ions.  The specified rotation w for  segment ( j )  i s  substituted into 
j 

(3.5) ,  yielding 

where 

Eqs. (3.48) and (3.50) can be combined to replace the original equations 

for  node 1.  

In the second case, two force resultants and a moment about some 

point are to be computed. To obtain the two force resultants,  we sum 

a l l  the m matrix equations associated with the m nodes on the s t ra in  

boundary. The two force resultants then appear on the right-hand mem- 

ber of the resulting matrix equation which i s  to replace the original 



equation f o r  node 1. The operat ions can be represented by the  r e l a t i o n s  

The moment about a point ,  say, node 1, of t he  boundary forces can be 

obtained by p remu l t i p l y ing  each o f  the m m a t r i x  equations considered 

above by the  m a t r i x  

which conta ins the  d i f f e rences  i n  coordinates between node 1 and node i. 

A f t e r  the  products a re  summed, the  requ i red  moment appears on the  r i g h t -  

hand member o f  t he  r e s u l t i n g  sca lar  equation. This equation and (3.48) 

can be combined t o  replace t h e  o r i g i n a l  equation o f  node m. The opera- 

t i o n s  can be represented by the  r e l a t i o n s  



where 

0 
A .  = 

1 s in  qi  

The algorithm of modification fo r  s t r a i n  boundary conditions can be 

summarized as  follows: 

Case 1 .  A r i g id  body motion i s  specified.  

1 .  Replace o n i g i d  equa;tion do& node 1 b y  (3.48) and (3.50). 

2. Replace oticjinal equatiovtr, huh o thm nodu b y  (3.44). 

3. Tk& bpecidied dinphcement6 a;t a node ail i n  dinphcmeM;t 

bowldu ty  cunditiuvtr, . 
Case 2.  No r ig id  body motion i s  specified.  

1 . Replace ahigiLZGLe eyuafio~ doh nude 1 b y  applying (3 .52 ) and 

(3.53). 

2. Replace ohigind equa;tiovtr, dun noda 2, 3 ,  . . ., m-1 by (3.44). 

3. Replace o a i n d  equa;tiun doh node m b y  applying (3.55), 
(3.56),  (3.57),  and (3.58). 

3.5. Modification for Boundary Conditions in Bending. 

The boundary conditions in bending considered in t h i s  section are:  

displacement, s t r e s s ,  mixed, s t r e s s  function,  and standard boundary 

conditions. Stretching-bending dual i ty  can be applied in the algorithm 

of modification fo r  boundary conditions in s t re tching developed in the 

previous section.  

1. Displacement Boundary Conditions. 

The quant i t ies  to  be specified fo r  a boundary portion with displace- 

ment boundary conditions are the  nodal displacement w and the slope w 
9 n 

of the pla te  edge in the  di rect ion of the outward normal n . In the 

f i n i t e  element method, only the average value of w along a s ide  need , n 



be spec i f ied .  The average value of t h e  slope w ( ~ )  i n  the  5 -d i rec t i on  
9s 

fo r  s ide  ( i )  o f  l eng th  1 i s  g iven by 

where nodes i and j are  connected by s ide  ( i ) .  The components w and 
,x 

w of the  average edge slope i n  the  g loba l  coordinate system may be 
3 Y 

obta ined from w and w by r e l a t i o n s  s i m i l a r  t o  (3.2). E x p l i c i t l y ,  
,n ¶ s  

the r e l a t i o n s  are  

w Y X  = w  ,n c o s O i - w  , S s i n $ i ,  

(3.62) 
w = W  s i n  Oi + W  cos Oi. 

¶Y ,n , s 

The general ized nodal r o t a t i o n s  due t o  edge slope may be computed 

through equations dual o f  (3.7), i n  which t h e  curvatures w and w 
¶ xs YYS 

are required.  Through i n t e g r a t i o n  by parts, however, they can be com- 

puted d i r e c t l y  from w and w and the  r e s u l t s  a re  , x YY 

I - - - ( i  
Rx i wi + w  , 

9Y 3Y 

I - ( i  > Ryi - Wi - w , , x ,x 

I - ( i  > Rx j  - W j  - W  , 
,Y ,Y 

( i  R' = - w j  + w  , 
y j  , x Y X  

where the  superscr ip ts  k and (k )  denote the  average q u a n t i t i e s  a t  node k 
and s ide  (k), respec t i ve l y .  

In khe ayn;tem e y u a t i o ~ ,  nubmakkica 

m e  added Xu P i  and P'., hapeca%dy, doh eveny aide dong khe bound- 
J 

my w i t h  specdied dinphcemelzt boundany condi;tion. 



2. Stress Boundary Conditions. 

I n  s t ress  boundary cond i t ions ,  edge s t ress  couple Mn and edge ef-  

f e c t i v e  shear Qne a re  s p e c i f i e d  f o r  a  p o r t i o n  o f  t h e  boundary. From 

these values and the  p a r t i c u l a r  so lu t i on ,  we o b t a i n  

where M i  and Qie are dual o f  cS and xS, respec t i ve l y ,  i n  the  s t r e t c h i n g  

problem. The a lgo r i t hm f o r  mod i f i ca t i on  o f  t he  system equations i s  ex- 

a c t l y  the same as s t r a i n  boundary cond i t i ons  i n  s t r e t c h i n g .  

The q u a n t i t i e s  Ui, Vi, and R .  a re  q u a n t i t i e s  dual o f  a  r i g i d  body 
J 

motion i n  s t r e t c h i n g  and may be s p e c i f i e d  f o r  t he  s t ress  boundary por-  

t i o n .  

The equat ions dual o f  (3.4), (3.5), and (3.6) take the  form 

M?Ii = - (Ui+, - Ui) s i n  @i -I- (Vi+l - Vi) cos @ i ,  (3.66) 

n.[ .  = - (Uicl - Ui) cos @i - (Vi+l - Vi) s i n  @i, (3.67) 
1 

where M i  i s  M i  f o r  s i de  ( i )  and Q; i s  Q:e a t  node i. 

3. Mixed Boundary Conditions. 

I n  mixed boundary cond i t ions ,  one s t ress  f u n c t i o n  component and a  

curva ture  component i n  t he  same d i r e c t i o n  a re  prescr ibed.  The n o t a t i o n  

f o r  d i r e c t i o n s  o f  s p e c i f i e d  q u a n t i t i e s  (F ig.  3.5) and the  a lgo r i t hm f o r  

m o d i f i c a t i o n  o f  t he  system equat ions a re  e x a c t l y  the  same as i t s  dual i n  

s t re t ch ing .  

4. Stress Function Boundary Conditions. 

I f  the  s t ress  func t i ons  U! are  prescr ibed a t  node i, then there  a re  



two less  unknown nodal s t ress  functions. The algorithm f o r  modification 
of the equations a re  exactly the same as tha t  under displacement bound- 
ary conditions in stretching. 

5. Standard Boundary Conditions. 

Several standard boundary conditions which are  special cases of the 
previous boundary conditions a re  presented here. 

SIMPLE SUPPORT: 

Simple support i s  a special case of mixed boundary conditions. Dis- 
placement component w and s t r e s s  couple Mn are  both zero along the bound- 

ary. W i t h  w zero along the s-direction, xS i s  also zero. We take the 

particular solution functions Kx and K which are  zero along the bound- 
Y 

ary. Since Ks and Kn are  then zero by transformation, MI: becomes zero 

by using (1.33). Boundary conditions for  the homogeneous problem which 
i s  dual of the stretching problem are obtained as follows: 

From (3.65), M E  = 0. W i t h  U S Y S  = M:, US i s  constant and i s  taken, 

fo r  convenience, to  be zero. Since 

x; = Xs + Kn,  

X; becomes zero. Thus, the required boundary conditions are  tha t  both 

U s  and X; are  zero along the boundary. 

LINE OF SYMMETRY: 

The l ine  of symmetry boundary resul ts  when there i s  symmetry i n  

geometry and loading. By using the symmetry boundary, only half or a 

quarter of a plate need be solved. The symmetry boundary i s  a special 

case of mixed boundary conditions. 
Along the l ine  of symmetry, the normal slope w y n  and effective 

shear Qne  are both zero, which leads to zero the curvature xnS. We take 

the particular solution functions which resul ts  in Ks and K both 
Y n  n ,n  



being zero. 
Boundary conditions f o r  the homogeneous problem which i s  dual of 

the s t re tching problem a re  obtained in the form 

- 
x t s  - Xns = 0 

and 
- 

"n,ss - Qne - D(K,, ,  + VK,,,) = 0.  

To eliminate the quanti ty dual of a r ig id  body motion in s t re tching,  we 
take U n  as  zero, f o r  convenience. Thus, the required boundary condi- 

t ions a re  t ha t  both U n  and x iS  a r e  zero along the boundary. 

FREE:  

This i s  a special case of s t r e s s  boundary conditions i n  which both 
Mn and Qne a r e  zero. 

FIXED SUPPORT: 
This i s  a special case o f  displacement boundary conditions in which 

both w and w a re  zero. , n 



CHAPTER 4 

COMPUTER IMPLEMENTATION OF THE PLANAL SYSTEM 

4.1. introduction. 

The dual f i n i t e  element method described in the previous chapters 

i s  implemented into a system employing a large scale digi ta l  computer. 

This computer system which i s  described in the remainder of t h i s  work 

i s  called the PLANAL System, representing the Plate Analysis Language. 

The scope of the system i s  limited to  solutions of plate problems in 

stretching and bending. 

The PLANAL System i s  developed as a subsystem of the Integrated 

Civil Engineering System (ICES) a t  the Department of Civil Engineering, 

Massachusetts Ins t i tu te  of Technology. Externally, an ICES subsystem 

consists of a ser ies  of commands, which serve as communication 1 inks 

between a user and the subsystem. Internally, each command i s  processed 

by a command interpreter which ca l l  s translation programs (Command 

Definition Blocks, or  CDBs) written in the Command Definition Language 

( C D L ) .  A CDB in t u r n  ca l l s  computer programs (subroutines) written i n  

ICETRAN (ICES FORTRAN) which i s  a FORTRAN-based, procedure-oriented 

language. The subroutines f ina l ly  perform the intended tasks in the 

system. A complete description of ICES, CDL, and ICETRAN may be found 

in [15,16,21]. 

A number of advantages r e su l t  in developing the PLANAL System in 

ICES. The input commands are  formed in a f ree ,  problem-oriented s ty le ,  

using vocabulary already familiar to  the user (Chapter 5 ) .  The features 



of dynamic memory allocation (DM) does not l imit the s ize of a problem 

(e.g. ,  the maximum number of nodes) that  can be handled by the system. 

Finally, related programs are  formed into units called load modules; 

thus, e f f ic ien t  use of the core of a computer may be realized by bring- 

ing into core only those modules which are  necessary for  the current 

computation. 
The organization and sequence of operations of PLANAL are  similar 

to those of STRUDL [l7,18] which i s  another ICES subsystem. The system 
i s  also part ia l ly  based on works by Nagy [I91 and Ferrante [ l l f  . 

4.2. Organization and Sequence of Operations. 

After PLANAL has been in i t ia l ized  as a subsystem of ICES, addresses 

for  COMMON variables are  assigned for  transmitting data between CDBs and 
ICETRAN programs. A COMMON map i s  included in Appendix C .  Most of the 

arrays and scalars used in PLANAL are COMMON variables, and are described 

briefly i n  the COMMON map. A more detailed description of many of these 

variables i s  presented i n  Appendix D. The subroutines in PLANAL are 

organized into 19 load modules. Documentations of the load modules and 

subroutines are given in Appendices E and F ,  respectively. A complete 

l i s t ing  of the CDBs and ICETRAN programs i s  included in Appendix G .  

The sequence s f  operations in PLANAL i s  i l lus t ra ted  in Fig. 4.1. 

Each operation ca l l s  for one or more load modules, and each load module 

may be called more than once under different  a1 iases (which are also 
entry points to  a module) . 

1. Data Input. 

Topology of the plate to  be analyzed i s  processed by Load 

Modules STINCI and STEJPR. Informations on element properties, 

boundary conditions, and loadings are then processed (STHGEN, 

S T H I N I )  . 

2. Finite Element Analysis. 

When a l l  input data has been provided, the FINITE ELEMENT 

ANALYSIS command i s  issued by the user. Control i s  then transferred 



START 9 
I 

STTNCr , STEJPR, STHGEN , STHINr 

i 

~ t r e t c h i n ~ ~ - ~  Bending 

J. # 

# 

STH1 FS, STHPAR, STHPl R 
I 

STHASS 

.- - J 
J, 

- 

6. STHBCM 

= STHNAS 

S t re t ch ing  Bending 
d 

f 7 
- 
fl > 

STHSTR 

STHS 1 R 

STHSAS STHSAS 

$. * - STHSVR r STHNSL 

I STHBKS, ,STHBlS I 

F i g .  4.1. Sequence o f  operat ions i n  PLANAL. 



to  STHMAI which se ts  u p  subsequent operations. 

3. Generation of Local Coefficient Matrices. 

Local coefficient matrices fo r  a l l  the elements are generated 

by Load Module STHGEN. 

4. Assembly of the Global Coefficient Matrix. 

The global coefficient matrix i s  assembled from the local coef- 

f i c i en t  matrices according to  the connectivity of the nodes. Depend- 
ing on the symmetry of the global coefficient matrix, e i ther  SBHASS 

or STHNAS i s  used. 

5. Bending Particular Solution. 

In the bending problem, when particular solution functions are  

not provided, standard PLANAL procedure will be used for  their  con- 

struction (STH1 FS, STHPAR, STHP1 R )  . 

6 .  Management of Modification of System Equations. 

After the global coefficient matrix has been assembled, the 

right-hand members of the system equations are modified for  the load- 

ing (STHBCM) . STHBCM also controls the call ing sequence of the 

processing of different  boundary conditions along the plate boundary. 

7., Boundary Conditions Modifications. 

The system of equations i s  modified according to existing 

boundary conditions. Different load modules are called depending on 

whether the problem i s  one of stretching or one of bending (STHSTR, 

STHS1 R ,  STHBEN , STHSAS ) . 

8. Solution of the System Equations. 

The unknowns (displacements or s t ress  functions) are  solved 

from the modified system equations by call ing the proper load module 

(STHSVR, STHNSL) . 



Quantities related to the unknowns can be computed by back- 
substi tution a f t e r  the unknowns have been sol ved (STHBKS, STHBl s ) .  

4.3. Information for Installlation of PLANAL. 

ICES contains a number of subsystems and a b a i t  system tha t  con- 

t ro l s  a l l  the subsystems. The operation of a subsystem i s  independent 

of any other subsystems. Since the PLANAL System i s  a part of ICES, any 

execution or modification of PLANAL will require the use of the basic 
sys tern of ICES i t s e l f  . 

For development, modification and execution of PLANAL o r  any ICE$ 
subsystem, the "ICES/360 Basic System and Language Processors," a pack- 
age of basic system programs, i s  required. For execution only, the 
"ICES/360 Basic System," a subset of the above, is needed. (The sole 
d i s t r i  buter of ICES programs i s  the IBM Corporation, and the Program 
Order Numbers of the above two packages are  360D 16.2.005 and 360D 

16.2.004, respectively.) 
Because of interface requirements during development, ICES a t  pre- 

sent operates only i n  an IBM Operating System/360 environment. PLANAL 

requires as a minimum machine an S.360 Model 40, w i t h  a 128K-byte core, 
two 231 1 disk drives (or the i r  equivalent) , and input/output devices. 
The above packages w i t h  the i r  proper documentation may be obtained from 
IBM Corporation by wri l i n g :  IBM Corporation, Program Information De- 
partment, 40 Saw Mill River Road, Hawthorne, New York 10532, U.S.A. 

The PLANAL System as described here has not been released to  the 

public. Further information on PLANAL and ICES may be obtained from: 
Headquarters, Department of Civil Engineering, Room 1-290, 77 Massachu- 

s e t t s  Avenue, Cambridge, Massachusetts 02139, U.S.A. 



CHAPTER 5 

USER'S MANUAL OF T H E  PkANAL S Y S T E M  

5.1. Introduction. 

The user 's  manual i n  t h i s  chapter provides a complete description 
of a l l  the commands in PLANAL, the Plate Analysis Language. The com- 
mands i n  the PLANAL System are written i n  a problem-oriented s ty l e  that  
i s  easi ly  recognizable and does not require a fixed format. 

Input information describing a problem to be solved i s  supplied to  
the PLANAL System through a s e t  of commands. Each comand i s  interpret-  
ed by a language processor, called the command interpreter.  Control i s  
ul timately transferred to  the appropriate subroutines in the PLANAL Sys- 
tem to perform the intended task. By suitably assembling a s e t  of com- 
mands, a user can solve a problem using the PLANAL System. 

5.2. Capabilities of the System. 

A t  present, the analysis capabi l i t ies  of the PLANAL System f a l l  in- 
t o  two catagories: plate stretching problems, and plate bending prob- 
1 ems. 

Plate S&&cking. In the plate stretching problem, the system can 
analyze a plate of arbi t rary shape, variable thickness and material 
properties, and under arbi t rary in-plane loading. The boundary condi- 

t ions available are  those of displacement, s t ress ,  mixed, e l a s t i c  sup- 



port, edge beam, and s t ra in .  

PRale Bending. In the plate bending problem, when there i s  no 
la te ra l  loading, or when there is a la teral  loading and corresponding 
particular solution functions are  supplied, the system can analyze a 
plate of arbi t rary shape, and variable thickness and material proper- 
t i e s .  

When there i s  a la teral  loading b u t  no particular solution func- 
t ions a re  supplied, the present system will construct appropriate par- 
t i cu la r  solution functions only i f  certain requirements in geometry and 

loading are  sa t i s f ied .  The plate must be of rectangular shape, and uni- 
form thickness and material properties. The loading i s  restr ic ted t o  
one which varies 1 inearly in two orthogonal directions x and y. This 
load function q i s  expressible i n  the form 

where cl , cZ ,  and c3 are  arbi t rary constants. (Uniformly distributed 
loads and hydrostatic loads are  examples of th is  form of loading.) The 
system can also analyze the case of a concentrated la teral  force applied 
a t  the intersecting point of the l ines  of symmetry of the plate.  

The boundary conditions avai lab1 e are  those of displacement, 
s t ress ,  and mixed. The same boundary conditions l i s t ed  under simple 
support, fixed support, f ree,  and symmetry are  also available. 

5.3. Format of Commands. 

A11 commands i n  PLANAL have a f ree  format i n  the sense tha t  there 
are no requirements for  certain information to  appear in certain pre- 
scribed columns in an input card. However, the following rules must be 

observed i n  preparing input for  PLANAL: 

1 All 80 columns of a card may be used. 
2. Embedded blanks in words a re  not allowed. 
3. Where one blank i s  required, several may be used. 
4. The f i r s t  character on a card can be placed i n  any column. 
5. If more than one card i s  needed to complete a comand, continuation 



cards a r e  allowed. To continue a comand, a minus sign preceded by 
a t  l e a s t  one blank i s  placed on the card t o  be continued. (The 
minus  s ign i s  t o  be the  l a s t  character  typed on t h a t  card.)  

E x a m p l e  : 

1 3 4 5 9 14 THICKNESS 1.0 EX 30000000.0 - 
EY 30000000.0 PX 0.25 P Y  0.25 G 12000000.0 

6. Comments may be interspersed among the comands a t  the  use r ' s  d i s -  
cre t ion.  The card columns a f t e r  a $ sign preceded by a t  l e a s t  one 

blank a r e  avai lable  f o r  use r ' s  comments. Cards w i t h  a $ sign i n  

card column 1 a r e  likewise avai lable  f o r  comments. 
E x a m p t e :  

$ THIS IS A UNIFORMLY LOADED PLATE. 

7. A1 1 a1 phameric data must be placed between sing1 e quotes, " . 
Words such as  NODE COORDINATES, ELEMENT, o r  THICKNESS a r e  i n  the 

standard vocabulary of PLANAL and a r e  not data;  therefore,  they 

must not be placed between s ing le  quotes. 

E x a m p l e  : 

ELEMENT PROPERTIES TYPE "ST " 
8. If  data items i n  a command a r e  supplied i n  the  order speci f ied ,  no 

labels  need be used. I f  a label  is  used w i t h  any data item i n  a 

command, a l l  succeeding data items f o r  t h a t  command must be l a -  

beled. For example, i n  t h e  NODE COORDINATES command, 

1 X 10. Y 20. 

1 10. 20. 

1 10. Y 20. 

1 Y 20. X 10. 

a r e  a l l  acceptable forms (here, X and Y a r e  l abe l s ) .  B u t  
1 X 10. 20. 

is not acceptable t o  the system. 

5.4. Convention. 

Throughout the remainder of this chapter, ce r ta in  notational con- 

ventions wi l l  be followed i n  describing the commands. 



U n d U e d  Chahacjtm. In the command description , characters 
which are  underlined are  necessary symbols fo r  identification by the 
command interpreter  and must appear i n  the commands. Other characters 
or words l i s t ed  i n  the command b u t  not underlined may be included for  
c l a r i t y  or otherwise omitted. For example, i n  the TYPE specification 
command (Section 5.6), 

TYPE PLATE STRETCHING 
TYPE STRETCH 
TYP STR 

provide the same information fo r  the system. 

Mode 06 P a .  Data are  e i ther  real ,  integer, or alphameric as des- 
ignated. A real data item requires a decimal point while an integer 
data item does not. An alphameric data item consists of one or more 
characters each of which can be e i ther  a l e t t e r  or a numeral. In the 
command description, real and integer quantit ies are  designated by v and 
n ,  respectively, with i d e ~ t i f y i n g  subscripts. Words placed between sin- 
gle quotes shown i n  the form of a command are  the only data tha t  must be 
a1 phameri c. 

Nma cwzd LA&. The names of nodes, elements or boundaries may be 
integer or alphameric. Some of the commands require a node name l i s t  or 
an element name l i s t .  A node name l i s t  may consist of the name of a 
single node, or the names of a number of nodes. If  the names of the 
nodes a re  consecutive integers n l ,  nl+l , . . . . n2, then the l i s t  may be 

supplied i n  the form nl  TO n2.  When a name i s  alphameric, i t  must be 

enclosed by single quotes. The conventions f o r  an element name l i s t  a re  
the same as fo r  a node name l i s t .  
Example : 

4 THICKNESS 1.0 
3 TO 11 THICKNESS 1.0 
2 7 'AZYHICKNESS 1.0 
However, when node names (not node name l i s t )  are  indicated, the names 
of one or more (up to  ten) nodes can be specified, b u t  the option of 



nl TO n f l s  no longer available. 

Bmche.tx m d  Bhace~. In the commands, square brackets [ ] and the 
information they contain are to  be replaced by the appropriate i n p u t  

form representing the information required. Braces { 1 are used to in- 
dicate where chuic& are available in the i n p u t .  

5.5. Preparation of Input. 

PLANAL commands can be classif ied into ten groups. Each group pro- 
vides a certain type of information and i s  made u p  of one or more i n p u t  

cards. The ten groups are: 

Problem in i t ia t ion ,  
Type specification, 

U n i t  declaration, 
Geometry and topology, 
Element properties specification, 
Boundary condition specification, 
Loading specification, 
Particular solution functions f o r  the bending problem, 

Output and analysis comands, 
Termination statement. 

I t  i s  recommended tha t  the order of groups of commands as given 
above should be followed in describing a problem, although certain 
minor variations a re  acceptable. (For a comparison with the detai ls  of 
i n p u t  to a parallel system STRUDL, the STRUDL User" Manual [I81 may be 
consulted. ) 

All the above groups of comands except Groups 3 ,  7 ,  and 8 must be 
supplied before a problem can be solved i n  the PLANAL System. If stan- 

dard units (Section 5.6) a re  assumed, unit declaration in Group 3 can be 
omitted. When there are  no loadings, Group 7 can be neglected. Group 8 

i s  excluded from the input commands in the stretching problem or  in the 
bending problem when particular solution functions are  unknown. 
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5.6. Description of Commands. 

The ten groups o f  PLANAL commands are  now described i n  d e t a i l  i n  

t h i s  sect ion. Examples are  included where appropriate. 

I. Problem Initiation. 

PLANAL ['name'] [ ' t i t l e ' ]  

The word PLANAL s i g n i f i e s  the beginning o f  a new problem t o  be 

solved by the system. The 'name' i s  an alphameric name chosen by the 

user t o  i d e n t i f y  h i s  problem. It must be enclosed i n  s ing le  quotes and 

may have a maximum length  o f  e i gh t  characters. The ' t i t l e '  i s  vp;tiond 

(may be omitted); i t  contains the t i t l e  o f  the problem o r  any o ther  com- 

ments, and may have a maximum length  o f  64 characters. 

Example : 
PLANAL 'U44LSSL11 'S.S.SQ. PLATE, 25 NODES, 32 ELEMENTS.' 

The fo l l ow ing  two commands are op;tivnd and are placed, i f  used, 

a f t e r  the problem i n i t i a t i o n  card. They are usua l ly  no t  included i n  a 

normal PLANAL execution job. 

When ce r t a i n  system er ro rs  are  detected dur ing execution, processing o f  

the problem i n  the computer w i l l  be interrupted.  A DEBUG ALL command 

w i l l  cause the l i s t i n g  (dump) o f  the e n t i r e  core o f  the computer a t  the 

time o f  i n te r rup t ion .  A DEBUG COMMON command w i l l  cause the l i s t i n g  o f  

the COMMON area o f  the core. The DEBUG command i s  useful  on ly  f o r  sys- 

tem debugging. 

The PLDEBUG command causes the p r i n t i n g  o f  the names o f  a l l  the 

important subroutines whenever they are ca l l ed  by the system. It i s  

useful  i f  the c a l l i n g  sequence o f  subroutines i s  desired. 

Example : 
PLANAL ' EXAMPLE ' 
DEBUG COMMON 

PLDEBUG 
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2. Type Specification. 

PLATE STRETCHING T Y P E 1  - - 
PLATE - BENDING 

This command i s  used to specify the type of the problem i n  question. 

The types available a t  the present are  PLATE STRETCHING and PLATE BENDING. 

The form of the s t i f fness  coefficient matrix in the system equation 
may be symmetrical or  non-symmetrical depending on the types of boundary 
conditions involved. If the matrix for  a particular problem i s  symmet- 
r i c a l ,  the user may specify the SYMMETRICAL form, or (perhaps for  com- 
parison) the NONSYMMETRICAL form, which i s  also acceptable to  the system 

in th is  case. However, by leaving the l a s t  item blank, the correct form 

of symmetry will be automatically selected by the system. 

Example : 

TYPE PLATE BENDING 

[1 ength u n i t ]  

[force unit] 

[angular unit] 

[temperature unit] 

[time unit] 

The UNITS command specifies the units of input data following the 

statement and designates the units for  output. The command i s  optional 

(may be omi t ted)  and may be used any number of times in the same problem. 

If they are  not specified, the units assumed as cltanckud in the f ive unit 

types are  inches, pounds, radians, Fahrenheit, and seconds, respectively. 
The following are  the available units for  the system: 

Length unit:  - INCHES, - FEET, - FT, CENTIMETERS, - CM, or - METERS, 

Force unit:  - POUNDS, - -  L B ,  KIPS, - TONS, - KILOGRAMS, KG, or MTON, - - 
Angular u n i t :  - RADIANS, or - DEGREES, 

Temperature unit:  - FAHRENHEIT, or  CENTIGRADE, 

Time unit: - SECONDS, - MINUTES, or  - HOURS. 



Any u n i t  types n o t  g iven i n  a UNITS command a re  assumed t o  remain 

unchanged f rom those p rev ious l y  s p e c i f i e d  ( o r  t he  standard values)  . 
Example : 

UNITS FEET KIPS FAH 

UNITS SEC RADIANS INCHES LB 

4. Ge~metrry and Topology. 

NODE COORDINATES -- 

[node name] - X [v,] 1 [v 1 
Y 1 E::r!:ank 1 

ELEMENT INCIDENCES - - 
[element name] [node name I] [node name 21 [node name 31 

BOUNDARY INCIDENCES 

The NODE COORDINATES command s p e c i f i e s  the  coordinates o f  each node 

w i t h  respect  t o  an a r b i t r a r i l y  chosen r ight-handed g loba l  frame. The 

xy-plane i s  t o  be taken as the  plane o f  t he  p la te .  The x- and y- 

coordinates a re  designated by vx and v respect ive ly ,  and they can be 
Y' 

supp l ied  i n  any order.  When no l abe ls  ( i  .e., X,Y) a re  given, the  values 

a r e  assumed t o  be g iven i n  the  order  o f  vx and v For nodes which a re  
Y' 

on the  boundary, the  l e t t e r  B i s  requ i red  t o  be placed a f t e r  the  coord i -  

nate values. 

The ELEMENT INCIDENCES command spec i f ies  the  c o n n e c t i v i t y  of the  

elements. The nodes o f  an element must be g iven i n  a d i r e c t i o n  sweeping 

from the  p o s i t i v e  x -ax is  t o  the  p o s i t i v e  y-ax is ,  i.e., i n  a counter- 

c lockwise order  w i t h  respect  t o  a r ight-handed reference axes (F ig.  5.1 ) .  

The f i r s t  node g iven can be any node o f  the  element. For example, the 

element inc idence f o r  element 5 i n  F ig.  5.1 may be s p e c i f i e d  i n  one o f  



Fig. 5.1. Order f o r  specifying element incidence. 

the  following forms: 

5 1 3 2  

5 3 2 1  

5 2 1 3  

The BOUNDARY INCIDENCES command is  used t o  assign names to  the  

boundaries of the pla te  f o r  subsequent iden t i f i ca t ion .  Node name may be 

the name of any node located on the boundary being named. A boundary i s  

defined here as a completely closed path bounding the  pla te .  There a r e  
more than one boundaries bounding a p la te  w i t h  i n t e r i o r  openings. This 

command causes the  chain of boundary nodes f o r  each boundary t o  assembled. 

T h u s  i t  must be used a f t e r  the NODE COORDINATES and ELEMENT INCIDENCES 

commands, b u t  before any boundary conditions a r e  speci f ied .  

Node names, element names, and boundary names may be e i t he r  integer 

o r  alphameric. In the case of alphameric iden t i f i ca t ion ,  the name must 

be enclosed i n  s ing le  quotes. 

Exampla  : 

NODE COORDINATES 

3 X 3.75 Y 0.00 BOUNDARY 

'N7' Y 0.5 X -1.50 B 

4 3.75 1 .OO B 

ELEMENT INCIDENCES 

10 8 7 14 



'E2' ' 3 N V 4  'A2' 

BOUNDARY INCIDENCES 

1 1  

'BOUNDARY' 32 

5. Element Properties Specification. 

ELEMENT PROPERTIES TYPE [ I  type '1 - - - 
[element name 1 i s  t] - THICKNESS [vt] - EX [vex] - EY [v ] - eY 

The thickness and ma te r ia l  p rope r t i es  o f  the  elements a r e  s p e c i f i e d  

i n  t h i s  command and can be g iven i n  any order .  The type of elements t o  

be used i n  the  problem i s  s p e c i f i e d  i n  ' t ype ' ,  and the  o n l y  type t h a t  

can be used a t  present  i s  'CST' , represent ing  - Constant S t r a i n  L r i a n g l e  

element. The element name l i s t  may c o n s i s t  o f  t he  name o f  a s i n g l e  e le -  

ment, o r  a group o f  elements. The l i s t  may be replaced by the  word ALL 
(no quotes) i f  a l l  elements o f  the  p l a t e  have the  same proper t ies .  The 

var iab les ,  which are  t o  be rea l ,  have t h e  f o l l o w i n g  meaning: 

vt = average thickness o f  the  element, 

'ex = Young's modulus i n  the x -d i rec t ion ,  

v  = Young's modulus i n  t he  y -d i rec t i on ,  
eY 

v = Poisson's r a t i o  i n  the  x -d i rec t i on ,  
PX 

v  = Poisson's r a t i o  i n  t he  y -d i rec t i on ,  
PY 

v c ~  = thermal expansion c o e f f i c i e n t  i n  the  x -d i rec t i on ,  

v  = thermal expansion c o e f f i c i e n t  i n  the  y -d i rec t i on ,  
CY 

v = shear modulus, 
g 

vd = ma te r i a l  dens i t y  o f  t he  element. 

When v i s  n o t  given, i t  i s  assumed t o  be vex; when v i s  n o t  
eY PY 



l i s t e d ,  i t  i s  equated t o  vpxvex/vey. When the other  variables a r e  not 

given, they wil l  be taken as  zero. 

Examptk? : 

ELEMENT PROPERTIES TYPE ' CST " 
1 TO 16 TH 1 .0 EX 30000000.0 PX 0.25 DEN 0 .3  G 12000000.0 

ALL TH 1 .0 EX 10000000.0 PX 0.25 DEN 0.1 G 4000000.0 

6. Boundary Condition Specification. 

BOUNDARY CONDITION ["oundary name'] type 

[boundary portion] [quantity 11 [v l ]  [quantity 21 [v2] . . . 

This command spec i f i es  the boundary conditions on a l l  boundaries of 

the pla te .  The 'boundary name' i s  the  name of the pa r t i cu la r  boundary 

f o r  which boundary values a r e  tabulated.  Again, a boundary i s  defined 

as  a completely closed path bounding the  pla te .  

The type of boundary condition can be one of the following: In 

s t re tching:  DISPLACEMENT, STRESS, MIXED STRETCHING, ELASTIC, EDGE BEAM, 

and STRAIN; i n  bending: DISPLACEMENT, STRESS, FUNCTION, MIXED BENDING, 

SIMPLE SUPPORT, FIXED SUPPORT, FREE,  and SYMMETRY. Different appropri- 

a t e  boundary quan t i t i e s  a r e  t o  be specif ied f o r  d i f f e r en t  types of 

boundary condit ions,  and they a r e  l i s t e d  together on the  following pages. 

Only one type of boundary condition can appear i n  one BOUNDARY CONDITION 

command. For a boundary w i t h  more than one types of boundary conditions, 

several BOUNDARY CONDITION commands wil l  be required, and the  order i n  

which they a r e  supplied i s  immaterial. 

The posi t ive  s-di rect ion along a boundary is  taken to  be the posi- 

t i v e  sense along the  boundary. When one t raverses  in the posi t ive  s- 
d i rec t ion  along a boundary, the  normal vector outward from the  p la te  

points t o  the r i gh t  of the boundary. In the right-handed Cartesian co- 

ordinate  system adopted here, t h i s  d i rect ion i s  counter-clockwise f o r  an 
exterior boundary, and clockwise f o r  an i n t e r i o r  boundary. 

i%undatty pott ion defines the  boundary nodes and/or the element 

edges between boundary nodes t h a t  have the prescribed boundary values. 



There are  four forms of boundary portions to  accommodate various s i tua-  
tions of specifying boundary values : 

1. [node name] - POSITIVE [quantity 11 [v l ]  . . . 
2. [node name] - NEGATIVE [quantity I]  [vl]  . . . 
3 .  [node name] [quantity 11 [v l ]  . . . 
4. [node name I ]  - TO [node name 21 [quantity 11 [vl]  . . . 

In the form, the values v l ,  ... specified are  the limiting 

values approached from the positive side of [node name]. In the necond 

form, the values specified are  the limiting values approached from the 
negative side of [node name]. The f i r s t  and second forms of boundary 
p o r t i o ~  allow discontinuous boundary values to  be specified. When the 
values a t  the positive and negative sides of a node are  the same, the 
X h h d  form can be used. In the 4owrAh form, the ncune nodal values a re  
assigned to [node name 11 POSITIVE, to  [node name 21 NEGATIVE, and to  
a l l  intermediate nodes along the boundary between [node name 11 and 

[node name 21, traversed in the positive sense. When the values of a 
quantity a t  the two end nodes of an element edge are  given, l inear  
variation of tha t  quantity along the edge, wherever applicable, i s  
assumed. The following example i l l u s t r a t e s  the use of the four forms 
of boundary portions. 

Example 5.1. Consider a rectangular plate subjected to  distributed 
boundary s t resses  as shown in Fig. 5.2. The plate i s  divided into 
elements and the ten nodes a re  named as shown. The positive sense of 

the boundary goes from node 10 to  node 9 ,  and so forth.  The boundary i s  

named 'Bl '  and the boundary condition i s  tha t  of s t ress .  Boundary con- 
dit ion for  the complete boundary can be specified by the following 
statements : 



9 8 7 6 5 X 

Fig. 5.2. Example t o  i l l u s t r a t e  forms of boundary portion. 

BOUNDARY CONDITION 'B1 "TRESS 

4 POS N Y  0.0 

3NEG NY2.0 

3 POS N Y  1.0 

2NEG NY2.0 

2 TO 10 N Y  7.0 

10 TO 4 N Y  0.0 

To i l l u s t r a t e  an a l t e rna t e  form, the second l a s t  card above can 

be replaced by three  cards: 

2 POS NY 1.0 

1 N Y  1.0 
10 NEG N Y  1.0 

I t  should be noted t h a t  1 TO 2 involves the complete boundary ex- 

cep2 the s ide  between nodes 1 and 2. 1 TO 1 implies t ha t  the same 

boundary values a r e  speci f ied  f o r  the complete boundary. 

Each type of boundary condition requires ce r ta in  boundary quanti- 
t i e s  f o r  i t s  complete descript ion.  In the command format, boundary 



quantit ies are designated by quantity 1 ,  quantity 2, e tc .  The boundary 
quantit ies can be specified i n  any order. Quantities not specified will 
be taken as zero unless stated otherwise. Whenever components of vec- 
tors  are  indicated, they are  taken with respect to  the g l o b a l  Qname un- 
less  stated otherwise. The types of boundary conditions w i t h  t he i r  
associated boundary quantit ies a re  described below: 

(1)  Type: DISPLACEMENT 
Quantit ies : - U [vu] !l- [vv] [vw] R [vr] 

vu and vv are  the x- and y-components of the displacement fo r  

a11 nodes along the specified boundary portion, and are  to  be en- 
tered for  the plate  stretching problem. 

vw i s  the z-component of nodal displacement, and vr i s  the 

edge rotation 6 = - w They are  to  be entered i n  the plate 
, n '  

bending probl em. 

( 2 )  Type: STRESS 
Quantit ies : - NX [v,,] [v ] CJ, [vq] M [v,] ROTATION [vr] nY 

In the stretching problem, vnx and v a re  the x- and y- 
nY 

components of the edge s t ress  resultant (forcelunit  length) along 
the boundary portion. The values specified are  nodal values, and 
l inear  variations of these values are  assumed between nodes. 

In the bending problem, v i s  the z-component of the edge 
9 * 

effective shear Qne (forcelunit  length), and vm i s  the edge s t ress  
* 

couple M n n  (bending momentluni t length) whose vector i s  oriented 

in the positive s-direction. If the quantity dual to rotation i n  

stretching i s  known, i t  can be specified i n  vr .  If vr i s  not spec- 

i f ied,  i t  will not be automatically taken as zero. (See Type (6)  
for  use of vr.) 

(3)  Type: -- MIXED STRETCHING 
Quantities: - UR [vur] $- [vnr] WLE [va] 



This boundary condition i s  applicable t o  the s t re tching prob- 
lem only. "u r i s  the nodal displacement i n  the r-direction i n  the 

plane of the pla te  ( F i g .  5.3). vnr  i s  the edge s t r e s s  resul tant  

(forceluni t length) in the di rect ion perpendicular t o ,  and 7r/2 ra-  
dians ahead o f ,  the r-direction.  And va i s  the posi t ive  (counter- 

clockwise) angle from the  posi t ive  x-axis to  the r-direction.  
If vur  i s  not specified i t  would not be taken as  zero. The 

ends of a boundary portion of MIXED STRETCHING may be adjacent t o  
a boundary portion of DISPLACEMENT o r  STRESS i n  s t re tching.  By not 

specifying v u r  a t  such end nodes, vur  will e i t he r  take on the value 

specified under DISPLACEMENT or  be determined by the governing sys- 
tem of simultaneous equations. 

(4)  Type: ELASTIC 
Quant i t i es  : US [vus] 5 [vvs] [vkxx] [vkxy] - 

XYK [vkyxl XYY [vkyyl 

In t h i s  command, which i s  avai lable  fo r  the s t re tching problem 

only, vkxx, vkxy,  vkyx9 v a r e  the e l a s t i c  constants of the e las-  
~ Y Y  

t i c  support, vus ,  vvs a re  the x- and y-components of support d i s -  

placement. 

Fig. 5.3. Notation f o r  mixed boundary condition. 



(5)  Type: - EDGE BEAM 

Q u a n t i t i e s  : - NX [vnx] [vny] [ve] & [va] [vi] 

This  command i s  a v a i l a b l e  f o r  the  s t r e t c h i n g  problem only.  

The q u a n t i t i e s  vnx and v  a re  the  x- and y-components o f  t he  edge 
"Y 

s t ress  r e s u l t a n t  ( fo rce /un i  t 1  ength) appl i e d  a long the  edge beam 

w i t h i n  the  s p e c i f i e d  boundary po r t i on .  The values s p e c i f i e d  a re  

nodal values, and 1  i nea r  v a r i a t i o n s  o f  these values a re  assumed 

between nodes. ve i s  t he  Young's modulus o f  t he  beam mate r ia l  i n  

the  d i r e c t i o n  o f  the  beam, and vi i s  the  moment o f  area about a  

cen t ro ida l  a x i s  i n  the  z -d i rec t i on .  

When edge beam i s  s p e c i f i e d  anywhere along a  boundary, the  

e W e  boundary must be s p e c i f i e d  as an edge beam. Dumny po r t i ons  

o f  t he  edge beam can be e f f e c t e d  by tak ing  ve, va, and vi as zero. 

(6)  Type: STRAIN 

Q u a n t i t i e s :  - EPSILON [ve] - CHI [vc] - ROTATION [vr] 

This  boundary c o n d i t i o n  i s  appl i c a b l  e  t o  the  s t r e t c h i n g  prob- 

lem on ly .  It i s  used when the  extensional s t r a i n  ve o f  a  boundary 

segment and the  curvature vc a t  the j u n c t i o n  o f  two adjacent  bound- 

a r y  segments a re  known along a  boundary po r t i on .  I f  the  r o t a t i o n  

r- i s  n o t  spec i f ied ,  i t  w i l l  n o t  be au tomat i ca l l y  taken as zero. 

I n t e r n a l l y ,  v, s p e c i f i e d  a t  a  node i s  taken as the  s p e c i f i e d  curva- 

t u r e  o f  the  boundary a t  t h a t  node. The q u a n t i t i e s  ve and vr spec- 

i f i e d  a t  a  node a re  taken as the  extensional  s t r a i n  and r o t a t i o n ,  

respec t i ve l y ,  o f  t he  aegrneuct fo l low ing t h a t  node i n  a  p o s i t i v e  s- 

d i r e c t i o n .  

It should be noted t h a t  the  purpose o f  spec i f y i ng  r o t a t i o n  o f  

a  segment together  w i t h  the  spec i f y i ng  o f  displacements o f  a  node 

i s  t o  f i x  a  r i g i d  body displacement o f  t he  p l a t e  considered. Such 

a  r i g i d  body displacement can be spec i f ied  un ique ly  o n l y  once. 

Therefore, when the  r o t a t i o n  o f  one segment along a  boundary p o r t i o n  

i s  spec i f ied ,  t he  displacements a t  one of t he  nodes along t h a t  



boundary portion must a l so  be specified through a DISPLACEMENT com- 

mand. 

In the case when an en t i r e  boundary i s  of STRAIN boundary con- 

d i t ion ,  a special condition ex i s t s .  Let there be n boundary nodes 
( therefore n segments) along the boundary. The s t r a in s  along only 
n-l segments and the curvatures a t  only n-2 nodes need be specif ied,  

i n  addition to  the necessary specif icat ion of a r i g id  body d i s -  

placement (3  quan t i t i es ) .  That the above specif icat ion i s  su f f i -  
c i en t  can be verfied by the f a c t  t ha t  (n-1) + (n-2) + 3 = Zn,  which 

i s  equal to  the  2n unknown displacements along the  boundary (two 
displacements a t  each of the  n nodes). 

(7 )  Type: FUNCTION 
Quant i t i es  : - U [vu] [vV] 

In t h i s  boundary condition, which i s  applicable t o  pla te  bend- 

ing problems only, s t r e s s  functions l! and V a r e  specified.  I t  i s  
dual of the DISPLACEMENT boundary condition i n  s t re tching.  

(8) Type: -- MIXED BENDING 
Quant i t i es  : - UR [vu,] [vc] - ANGLE Eva] 

In t h i s  boundary condition, which i s  applicable t o  pla te  

bending problems only, the quant i t ies  dual of those in MIXED 

STRETCHING boundary condition a re  specified.  The quant i t ies  a re  

s t r e s s  function v u r ,  curvature vc and angle v,. (See Type ( 3 ) . )  

(9 )  Type: SIMPLE SUPPORT 
Quant i t i es  : None. 

This command i s  avai lable  f o r  the bending problem only. Inter-  

nally,  the system changes t h i s  boundary condition t o  t ha t  of MIXED 

BENDING, assigning a constant value t o  the s-component of the 
s t r e s s  function vector along the specified boundary portion. 

(10) Type: - FIXED SUPPORT 

Quant i t i es :  None. 

This command i s  avai lable  f o r  the bending problem only. Inter-  



n a l l y ,  the  system changes t h i s  boundary cond i t i on  t o  t h a t  of D I S -  

PLACEMENT, equating t o  zero the  displacements and r o t a t i o n s  along 

the  s p e c i f i e d  boundary por t ion .  

( 1  Type: - FREE 

Quan t i t i es :  None. 

This command i s  a v a i l a b l e  f o r  t he  bending problem only.  I n -  

t e r n a l l y ,  t he  system changes t h i s  boundary cond i t i on  t o  t h a t  o f  

STRESS, equating t o  zero the  edge e f f e c t i v e  shear and the  edge 

s t ress  couple along the  s p e c i f i e d  boundary por t ion .  

(12) Type: - SYMMETRY 

Quan t i t i es :  None. 

This command i s  a v a i l a b l e  f o r  t he  bending problem on ly .  I n -  

t e r n a l l y ,  t he  system changes t h i s  boundary cond i t i on  t o  t h a t  o f  

M IXED BENDING, assigning a l i n e a r  f u n c t i o n  Un t o  the  n-component 

o f  t he  s t ress  f u n c t i o n  vector  along the  s p e c i f i e d  boundary por- 

t i o n .  I n  the  case o f  a d i s t r i b u t e d  load ( l i m i t e d  t o  l i n e a r  func- 

t i o n s  o f  x and y) ,  Un w i l l  be a constant.  This command can be 

app l ied  on ly  t o  a l i n e  o f  symmetry i n  both gearnctty and lauding. 

Example 5.2. As an example t o  i l l u s t r a t e  the combination o f  some 

boundary cond i t ions  commands, consider a rec tangu lar  p l a t e  i n  s t re tch ing  

subjected t o  boundary stresses as shown i n  Fig. 5.4. The boundary i s  

named 'EXTERIOR'. The prescr ibed displacements are  u = v = 0 a t  nodes 3 

and 4; u = 0 a t  nodes 7 and 8. The boundary cond i t ions  i nd i ca ted  can be 

s p e c i f i e d  thus: 

BOUNDARY CONDITION 'EXTERIOR' STRESS 

1 TO 2 NX -1. NY 1. 

2 TO 3 NX 1. NY -1. 

4 TO 5 NX 1. NY -1. 

5 TO 6 NX 1. NY 1. 

BOUNDARY CONDITION 'EXTERIOR' DISPLACEMENT 

3 TO 4 U 0. V 0. 



Fig. 5.4. Example to  i l l u s t r a t e  the use of BOUNDARY CONDITION comnand. 

BOUNDARY CONDITION 'EXTERIOR ' MIXED STRETCHING 
6 POS NR 1 .  ANG 0. 

7 U R  0. NR 1. ANG 0. 

8 U R  0. NR 1 .  ANG 0. 

1 NEG NR 1. ANG 0. 

I t  may be noted tha t  in the l a s t  and fourth l a s t  cards above, UR i s  

not specified. 

7. Loading Speeificatis~a. 

LOAD1 NG - 
NODES [node names] - x [vxj y cvyj [v,j - 
UNIFORM 

The LOADING command specifies the loading applied to the plate. If 
there are no loadings, th i s  comnand must be ignored completely. The node 
names may be the name of a single node having the specified values, or  



may be a  1 i s t  o f  nodes (up t o  ten  nodes) having t h e  same spec i f i ed  v a l -  

ues. If t h e  load ing a t  a l l  t h e  nodes a re  i d e n t i c a l ,  t he  word UNIFORM 

can be used. The load  vec tor  can be e i t h e r  an i n t e n s i t y  o r  a concen- 

t r a t e d  fo rce .  The th ree components o f  t he  load vec tor  a re  spec i f i ed  by 

vx, vy, and vZ. Components n o t  s p e c i f i e d  w i l l  be taken as zero. 

LOAD I NG 

NODES 1  2 3 4  5  INTENSITY X 1.0 Y 2.0 

NODES 6 INTENSITY 1.5 2.0 

NODES 7 8 9 10 INT Y 2.0 X 1.5 

I n  the  bending problem, the present vers ion  of the  system can pro- 

cess a  l a t e r a l  l oad  i n t e n s i t y  o n l y  i f  i t  i s  l i n e a r  i n  x and y. Such a  

load ing i s  de f ined uniquely i f  the  load  i n t e n s i t y  i s  s p e c i f i e d  a t  th ree 

non-co l l inear  po in ts .  This form o f  spec i fy ing  such a  load ing i s  t h e  

on ly  form acceptable t o  the  system. 

ExampLe : 

LOAD I NG 

NODE 1 INTENSITY Z -1 .O 

NODE 5 INTENSITY Z -3.0 

NODE 14 INTENSITY Z -2.5 
In the  above example, nodes 1  , 5, and 14 must be non-col l  inear .  I f  

the three po in ts  d e f i n i n g  the  loading a re  c o l l i n e a r ,  an e r r o r  message 

w i l l  be issued by t h e  system. 

I f  the  load ing i s  a  uni form load, the  f o l l o w i n g  i s  an acceptable 

form: 

LOAD I NG 

UNIFORM INTENSITY Z 1.0 

If the loading i s  a  concentrated fo rce  app l ied  a t  the  i n t e r s e c t i n g  

p o i n t  o f  two l i n e s  o f  symmetry, t he  acceptable form i s :  

LOAD1 NG 

NODE 3 FORCE Z 50.0 



8. Particular Solution Functions Boa the Bending Problem. 

BENDING - PARTICULAR SOLUTION 

NODES [node names] -KX- [KxI  !U- [Ky] LKx3,1 .K'& [Ky,yl - 

This  command i s  a p p l i c a b l e  o n l y  t o  t h e  bending problem i n  which the  

p a r t i c u l a r  s o l u t i o n  func t i ons  Kx and K  o r  t h e i r  d e r i v a t i v e s  K  and 
Y  XYX 

K ~ Y ~  

a re  known. The node names may be t h e  name o f  a  s i n g l e  node having 

t h e  s p e c i f i e d  values, o r  may be the  names o f  several  nodes (up t o  ten  

nodes) having the  same s p e c i f i e d  values. 

Example : 

BENDING PARTICULAR SOLUTION 

NODES 1  4 9  KX 0.0 KY -0.08736 

NODES 2 3  8 KX 0.0 KY -0.08190 

I f  p a r t i c u l a r  s o l u t i o n  func t i ons  a re  unknown i n  t h e  bending problem, 

standard func t i ons  w i l l  be cons t ruc ted  by summing a Fou r ie r  ser ies ,  

prov ided c e r t a i n  l i m i t a t i o n s  i n  geometry and load ing  a re  met (see 

Sect ion 5.2) .  I n  such a case, and when p a r t i c u l a r  s o l u t i o n  func t i ons  

a re  n o t  app l i cab le ,  t h i s  command must be ignored completely.  

9. Output and Analysis Commands. 

NODES 
- OUTPUT 1 EMENIS q u a n t i t i e s  - 
FINITE ELEMENT ANALYSIS 

Once a l l  data requ i red  t o  perform an ana l ys i s  have been suppl ied, 

t he  ou tpu t  and ana l ys i s  command can be issued. 

Output can be computed a t  t h e  nodes, a t  t h e  elements, o r  both. I f  

ou tpu t  a t  both t he  nodes and elements i s  requested, two separate OUTPUT 

comands des ignat ing  NODES and ELEMENTS w i l l  be requ i red .  The quant i -  

t i e s  t o  be p r i n t e d  are  d i f f e r e n t  i n  t h e  s t r e t c h i n g  and bending problems: 



quantit ies i n  the 

stretching problem 

DISPLACEMENTS 
STRAINS 
STRESSES 
PRINCIPAL STRAINS - 
PRINCIPAL STRESSES - 
ALL - 

quantit ies in the 

bending problem 

FUNCTIONS - 
MOMENTS - 
CURVATURES 
PRINCIPAL - MOMENTS 
PRINCIPAL CURVATURES - 
ALL - 

ALL denotes tha t  a l l  quantit ies will be printed. When principal 
values (such as s t ra ins  or moments) a re  required, the principal direc- 
t ion i s  also computed. The direction i s  computed as the angle swept 
from the positive x-axis to  the direction of the majon principal value 
in the positive (counter-clockwise) sense. The ranges of tha t  angle are  
from 0 to   IT/^ radians and from 3 ~ / 2  t o  21-r radians. 
ExampLe : 
OUTPUT NODES DISPLACEMENTS PRINCIPAL STRESSES 
OUTPUT ELEMENTS ALL 

NuXe. If quantit ies a t  a node are  required, grid l ines parallel t o  
the axes are  passed through a l l  the nodes to  e f fec t  differentiations 
with respect to x and y. (For example, s t ra ins  are  derivatives of dis-  
placements.) When a 1 ine in the grid pattern i s  formed by only one 

node, the approximation to  a derivative a t  tha t  node cannot be made, and 
that  derivative i s  taken to  be zero. For auch nodes, quantit ies 1 isted 

i n  the output are  thus invalid. 

The analysis command must be the l a s t  card describing any one prob- 

lem to  be analyzed. 
Example : 
FINITE ANALYSIS 

For the purpose of understanding the internal working of the PLANAL 

System, a user may wish to  p r i n t  out certain arrays used in the process 
of analysis. These intermediate print-outs can be effected through the 



use of a number of control parameters i n  the analys is  command described 

above. (These parameters were frequently used during development of the 

system. ) The madid i ed  comand format when intermediate pri  nt-outs a r e  
a l s o  required i s :  

FINITE ELEMENT ANALYSIS - K1 [ k l ]  - K2 [k2]  - K3 [kg] - K4 [k4] - K5 [ k g ]  - K6 [k6] - 
K7 Ek71 K8 Ek81 Ckgl CklOl - - - 

Any control parameters can be supplied, and i n  any order.  They have the 
following meaning: 

kl  = 1 means t o  p r i n t  global s t i f f n e s s  matrices before boundary condi- 

t ion modification (symmetric: KDIAG, KOFDG, KPPRI; non- 

symmetric: FCMAT, IRELl , ICUREL, KPPRI) . 
k2 = 1 means t o  p r i n t  global s t i f f n e s s  matrices a f t e r  boundary condi- 

t ion  modification. 

kg = 1 means t o  p r i n t  BDCOND before boundary condition modification. 

k4 = 1 means t o  p r i n t  BDCOND a f t e r  boundary condition modification. 

k g  = 1 means t o  print ELSTMT. 

k6 U means t o  p r i n t  KPPRI a t  each s tep  of solver.  

k g  0 means t o  p r i n t  KPPRI, FCMAT, ICUINT a t  each s t ep  of solver 

(applicable only t o  non-symmetric coef f i c ien t  matr ices) .  

k7 = 0 means t h a t  K,, K a r e  t o  be used i n  forming KPPRI. 
Y 

k = 1 means t h a t  Kx,  K a r e  not t o  be used i n  forming KPPRI. 
Y 

k7 > 2 means t h a t  Kx K a r e  t o  be used i n  forming KPPRI. ,x '  Y ,Y 
k7 = 3 means t h a t  K,, K a r e  t o  be used i n  boundary correction of par- 

Y 
t i c u l a r  solution.  

kg = 1 means t ha t  pa r t i cu la r  solut ion functions a r e  

in tegrat ion w i t h  c a s  a function of x and y .  

kg = 2 means t h a t  pa r t i cu la r  solut ion functions a r e  

in tegrat ion w i t h  c = 0.5. 

kg ) 1 means t o  p r i n t  PBSOLN as  assembled by system 

computed by double 

computed by double 



kg = 2 means to  pr int  PBNTEM, KPBSLN, GRIDPR whenever applicable. 

k10 = 1 means to  compute load function by Fourier ser ies  and p r i n t  

resul t. 

For a description of the arrays l i s t ed ,  see Appendix D. 

Example: 

FINITE ELEMENT ANALYSIS K2 1 K10 1 

10. Termination Statement. 

FINISH 

T h i s  command requests control t o  ex i t  from the ICES System of which 
PLANAL i s  a subsystem. Therefore, the FINISH command must be placed 
a f t e r  a l l  the cards describing a problem to be analyzed. If there are  
more than one problem to  be analyzed (requiring more than one FINITE 
ELEMENT ANALYSIS commands), the cards describing each problem must be 
stacked together, and then one FINISH card i s  placed a f t e r  the combined 
deck (Fig. 5.5). 

A summary of a1 1 the PLANAL commands can be found i n  Appendix B. 

5.7. Formation of Bnpart Deck. 

An i n p u t  deck of cards submitted to  a computer for  execution must 
contain a number of control cards i n  addition to  the PLANAL commands 
tha t  describe the problem to be solved. These control cards a re  usually 
written i n  a job control language (JCL). In i t i a l  control cards are  
placed before the PLANAL commands and final control cards are  placed a t  
the end (Fig. 5.5). These control cards provide information for  job 
identification, accounting, and set t ing u p  the proper program l ibrar ies  
fo r  execution. Information to  be supplied on these cards depend on the 
computer configuration a t  a particular organization and must be deter- 
mined by tha t  organization. 

Listed here are  the control cards f o r  using the PLANAL System a t  
the Information Processing Center, the Massachusetts Ins t i tu te  of Tech- 
nology a t  the time when th is  work was prepared. 



IvLi;tiae CuvttnoL cahd!,: 

// SMITH 
/*MITID PROB=Ml234 ,PROG=5678 
/*SRI DEFER 
/*MAIN TIME=3,LIWES=2 
/*SETUP DDNAME=PACK16 ,UNIT=2314, ID=(234016, ,SAVE) ,A=QFM 
//JOBLIB DD DSNAME=ICES . LINKLIB ,DISP=OLD ,VOLUME= (PRIVATE ,RETAIN) 
// DD DSNAME=ICES.HO,DISP=QLD,VOLUME=(PRIVATE,RETAIN) 
// DD DSNAME=ICES .MODULES .STRUDLZ,DISP=OLD,VQLUME=(PRIVATE,RETAIN) 
// EXEC ICES 

Initial Control Cards 

PLANAL 'PROB1" 1 ;  1 
FINITE ELEMENT ANALYSIS 

PLANAL 'PROBN' 

> one or more 
PLANAL pro bl ems 

FINISH I 
Final Control Cards 1 

Fig. 5.5. Formation of input deck. 



CHAPTER 6 

APPLlCATlONS OF THE PLANAL SYSTEM 

6.1. introduction. 

Exampl es of appl ica t i  ons of the PLANAL System to both the s t r e t -  
ching and bending problems are  presented i n  t h i s  chapter. Sample input 
cards for  problems i n  the examples are  1 isted to i 11 ustrate  the use of 
various PLANAL commands, especially the boundary condition and loading 
specifications. 

Nodes should be numbered consecutively in such a pattern tha t  the 
difference between the node numbers of any two adjacent nodes should be 
as small as possible. In th i s  way, the band widths of non-zero entr ies  
in the coefficient matrix of the system equations (2.40) may be mini- 
mized. When the nodes of a plate form a rectangular grid pattern, they 
should be numbered consecutively i n  the direction parallel to  the ahotrk 

side (see Example 6.1). Proper numbering of nodes may save computation 
time in solving the system equations by as much as three times or more. 

Samples of output from the PLANAL System are also presented. The 
boundaries in a l l  the examples a re  named ' B O U N D '  in the i n p u t .  

6.2. Examples in Stretching. 

Four examples are  included here to  i l l u s t r a t e  combinations of 
different  boundary conditions in stretching problems. 

Exmple 6.1 . Te~nion  Specimen. Consider a homogeneous, isotropic, 
long plate of constant thickness t with dimensions as shown in Fig. 6.1. 

100 



Fig. 6.1. Dimensions and loading of a tension specimen. 

I t  i s  subjected to a tens i le  s t ress  N, applied a t  the ends. Taking ad- 

vantage of symmetry, we need to  analyze only the portion of the plate 

in the f i r s t  quadrant which i s  discretized into triangular elements in 
Fig. 6.2. I t  can be noted tha t  a t  the region where the sample narrows, 
a denser grid i s  used. The nodes a re  numbered consecutively along the 

shorter grid l ines .  ' We now i l l u s t r a t e  the PLANAL input for  the case 

5 when a = 2 in . ,  t = 1 in. ,  E = 10 psi ,  v = 0.3, and Nx = 1 1b/in. 

A sample of input cards to  the PLANAL System for  the tension spe- 

cimen problem i s  shown in Fig. 6.3 (some cards for  NODE COORDINATES and 

ELEMENT INCIDENCES which are  similar to  the ones shown have been omit- 

ted) .  The x- and y-axes are  l ines  of symmetry along which displacements 

v and u ,  respectively, are suppressed. These l ines  are  specified under 

a boundary condition of MIXED STRETCHING. Moreover, since u = v = 0 a t  

node 1, t h i s  node i s  specified under a boundary condition of DISPLACE- 

ment. Hence, a t  node 1 POSITIVE and node 1 NEGATIVE, UR i s  not spec- 

i f ied  under MIXED STRETCHING. • 



ExmpLe 6.2. C i r t c u h  Ph h Sub jeoted ;ta Cumpnanive Fonca . COP- 
s i d e r  a c i r c u l a r  d i s k  o f  rad ius  a subjected t o  a p a i r  o f  d i a m e t r i c a l l y  

opposi te compressive forces P (F ig.  6.4a). Theoret ica l  expressions f o r  

t he  stresses may be found i n  Timoshenko and Goodier [23]. Because o f  

symmetry, we analyze on ly  the  d i sk  i n  the  f i r s t  quadrant, which i s  d i $ -  

c r e t i z e d  i n t o  t r i a n g u l a r  elements i n  Fig. 6.4b. We analyze the  case 

5 when a = 1 in., E = 10 psi ,  v = 0.3, and P = 1 l b .  The p o r t i o n  o f  t he  

i n p u t  cards fo r  t h e  problem per ta in ing  t o  boundary cond i t i on  and 1 oad- 

i n g  spec i f i ca t i ons  a re  shown below: 

BOUNDARY CONDITION 'BOUND' DISPLACEMENT 
1 U 0.0 v 0.0 
BOUNDARY CONDITION ' BOUND ' M IXED STRETCHING 

1 POS NR 0.0 ANGLE 1 .5707963 
7 NEG U R O . O  NR 0.0ANGLE 1.5707963 
7 TO 28 UR 0.0 NR 0.0 ANGLE 1.5707963 
6 TO 2 WR 0.0 NR 0.0 ANGLE 0.0 
2POS URO.ONRO.OANGLE0.0 
1 NEG NR 0.0 ANGLE 0.0 

C i  r c l  ed are element numbers, 

Y j i  3 5  50 5 7  62  6 7  72 7  7  
unci  r c l  ed are node numbers. 

7  6 

3 7 5  

2 7 4 

1 4 7  1 2  1 8  2 6  39 4 5  53  58  6 3  6 8  7 3 7  

Fig. 6.2. D i s c r e t i z a t i o n  o f  a quar ter  o f  t he  tension specimen. 



PLANAL @TENSION"TENSION SPECIMEN." 
DEBUG COMMON 
PLDEBUG 
TYPE P L A T E  STRETCHING 
NODE COORDINATES 
1 0. 00 B 
2 0. 1. B 
3 0. 2, B 
4 1. 0 .  R 
5 1. 1. 
6 1. 2. B 
7 20 O a  B 
8 2. l o  

9 2. 20 B 
10 2.5 1.5 
1 1  7 - c  3 - 1 7  n 

ELEMENT INCIDENCES 
1 1 4 2  
2 4 5 2  
3 3 2 5  
4 5 6 3  
5 5 4 7  
6 7 8 5  
7 5 8 6  
8 8 9 6  
9 7 1 2  8 
10 12 13 8 
11 8 13 10 
17 R 1n o 

BOUNDARY I N C I D E N C E  
'BOUND* 1 
ELEMENT PROPERTIES TYPE "ST8 
A L L  THICK 10 EX 100000. PX 0.3 G 384410538 
BOUNDARY CONDIT ION WOUND'  DISPLACEMENT 
1 U 0.0 V 0.0 
BOUNDARY CONDIT ION @BOUND8 M I X E D  STRETCHING 
1 POS NR 0.0 ANGLE lo5707963 
4 NEG UR 0.0 NR 0.0 ANGLE 1.5707963 
4 T O  73 UR 0.0 NR 0.0 ANGLE 1.5707963 
3 POS UR 000 NR 000 ANGLE 000 
2 UR 0.0 NR 0.0 ANGLE 0.0 
1 NEG NR 0.0 ANGLE 0.0 

BOUNDARY CONDIT ION 'BOUND' STRESS 
73 TO 77 NX la0 NY 0.0 
77 TO 3 NX 0.0 NY 0.0 
OUTPUT NODES ALL 
OUTPUT ELEMENTS A L L  
F I N I T E  ELEMENT A N A L Y S I S  

F i g .  6.3. PLANAL input cards for the tension specimen problem. 



BOUNDARY CONDITION ' BOUND ' STRESS 
28 TO 6 N)( 0.0 N Y  0.0 
LOAD I NG 
NODE 6 FORCE Y -0.5 

A sample of the  output from the  PLANAL System i s  shown i n  Fig. 6.5. 

Theoretical and PLANAL r e s u l t s  a r e  compared i n  Fig, 6.6. I 

Example 6.3. Beam on ERanfic faunda;tian. A beam of length 2a and 
depth b r e s t s  on a i r  e l a s t i c  foundation and i s  subjected t o  a d i s t r ibu ted  

load N over a length of 2c as  shown in Fig. 6.7a. We analyze only half 
Y 

the beam (Fig. 6.7b) because of symmetry. We consider the  case when a = 

5 4 16 in . ,  b = 1 i n . ,  c = 4 i n . ,  E = 10 ps i ,  v = 0.3, and N = 10 Ib/in.  
Y 

If  we take the  s t i f f n e s s  coef f i c ien t s  of the e l a s t i c  foundation as  Kxx = 

- = K 3 x 10 4 lb / in . / in . ,  then the  i n p u t  cards f o r  boundary K x ~  - KYx YY 
condition are :  

BOUNDARY CONDITION ' BOUND'  ELASTIC 
1 TO 33 KXX 30000.0 KXY 30000.0 KYX 30000.0 KYY 30000.0 
BOUNDARY CONDITION ' BOUND ' STRESS 
33 TO 10 N Y  0.0 
10 TO 2 N Y  -10000.0 
BOUNDARY CONDITION ' BOUND ' MIXED STRETCHING 
2 TO 1 UR 0.0 NR 0.0 ANGLE 0.0 

The shape o f  the  deformed beam is  shown i n  Fig. 6 . 7 ~ .  II 

ExumpLe 6.4. ReckaMguRatr. Plate wiXh Edge Beam. A homogeneous, 

i so t rop ic  p la te  considered a s  a deep beam is  simply supported as shown 

in Fig. 6.8a. I t s  lower edge is  attached t o  an edge beam of cross-  

sectional  area Ab,  and i t s  upper edge is subjected t o  a d i s t r ibu ted  load 

p. Because of symmetry, we analyze only half  the  p la te  (Fig. 6.8b). 

The behavior of the p la te  is dependent on the  r a t i o  of Young's Moduli 
f o r  the  p la te  and the  edge beam, denoted by E and Eb ,  respectively.  We 

P 
2 now consider the case when a =12 i n . ,  b = 8 i n . ,  Ab = 0.955 i n .  , Ep = 

5 6 10 ps i ,  Eb = 3 x 10 ps i ,  v = 0,  and p = 1 lb / in .  

In preparing input cards f o r  the  problem, displacements a t  the  sup- 



a. Dimensions and loading. 

b. Discretization of a quarter disk. 

Fig. 6.4. Circular disk subjected to compressive forces. 



****u************t****************************u 
* f 
* ICES PL4NbL * 
f THE PLATE 4NALYSI S LANGUAGE * 
* * 
* MOOIFICATION 0 * 
t SEPTEYRER. 1 9 6 9  o 
* * * 2:52:16 8 / 2 1 / 6 9  1 
* * 
***UL*******************L*************4******** 

TYPE PLATE STRETCHING 

NODE COORDINATES 

I 0.0 0 . 0 8  

7 o n  - 3 -  

* * *O **** RESULTS **** **** 

NODAL DISPLACEMENTS 

NODE U V 

1 0.0 0 .o 
2 C. 0 -0.2246E-05 
3 0.0 -0.4755E-05 
4 0.0 -0.7885E-05 
5 0.0 -0.1232E-04 
b 0 .O -0.1944E-04 
7 0.1195E-05 -0.3917E-12 - ,-"-=-n=, -0 .1917~-05 

** GRlD PATTERN FOR DIFFERENTIATION. 

LINES PbRALLEL TC X-AXIS. 

6 NODES. 1 7 1 3  1 9  2 4  2 8  
6 NODES- 2 8 1 4  20 2 5  29 
h hTnFF. 1 O 1 5  71 71. I n  

L I N E S  PARALLEL TO Y-4x1 S. 

* NOTE 

W E N  A L l h E  I N  THE GRlD PATTERN FOR OIFFERENTIATION (SEE 4ROVEl I S  FIRMED 
BY ONE NODE, THE APPROXIMATION TO A DERIVATIVE AT THAT NOOF CANNOT BE MADE. 
THAT DERIVATIVE I S  TAKEN TO BE ZERO. FOR SUCH NODESr QUANTITIES LISTED RELCW 
ARE THUS IhVALID.  

NODAL STRAINS P N D  PRINCIPAL STRAINS 

NODE EX EY G4MMA-XY * E l  THETA-1 ( X  Tfl  E l l  

0.6595E-05 -0. 10586-04 - 0 . 2 1 6 l E ~ l l  O.6595E-35 
0.7101E-05 -0.1189E-04 0.1040E-05 0.7115F-05 
0.7886E-05 -0.1410E-04 0.3012E-05 0.7989E-05 
0.9065E-05 -0.1892E-04 0.7835E-05 0.9hC3E-05 
0. R l l  RE-05 -0.2888E-04 0.2177E-04 0.113RE-04 

n.n 
*G4MMA-XY = 2 FXY 

6.203 RAfJ = 359 0 59  t4 59.12 S 
0.327 R A D  = I n -44 9 4 . ~ 3  s 
0.068 RAD - 3 0 54  M 1.23 S 
0.137 R4D = 7 0 49 M 16.57 S 
0.266 RAO = 15 0 1 4  M 7.44 S 
0.3 RAO = O 0 0 Y 0.0 S 
" nn7 a 4 n  = o D 2 5  Y 10.89 s - .. ' 7  1, 5 

NODDL STRESSES LNC PRINCIPAL STRESSES 

NODE S X SY S XY 5 1  

-0.945CE Or) 
-0.1073F 0 1  
-0.1297E 0 1  
-O. l@ZlE 0 1  
-0.3134E 0 1  
-0.4646E 0 1  
-0 .R535E 0 0  

6.233 R4O = 3 5 9  0 5 9  M 59.12 $ 
0.027 UP0 = 1 D 3 4  M 4.83 S 
3.3SR R 4 0  = 3 O 54 Y 3.23 S 
0.137 RAO = 7 0 49  Y 16.57 5 
0.266 R4O = 15 0 1 4  M 7.44 5 
0.0 RAn = O D  O M  0.0 S 
0,307 RAD = 0 0 2 5  Y l l . 8 9  S 

(i -0.1394E 0 1  -0.4646E 0 1  0.0 

ELEPENT STRAINS ANC PRINCIPAL STRAINS 

6.283 R I D  = 359 D 59  M 59.12 5 
0.059 RAO = 3 D 2 4  M 17.30 S 
0.044 RAD = 7 0 1 0  M 37.37 S 
0.132 R A O  = 7 n 3 4  r 7.n7 s 
0.093 RAD = 5 D 2 0  '4 25.2 S 
0.247 R4D = 1 4  D 10 M 49.6A S 
0 . 1 5 4 R 4 D  = R 0 5 0  M 2 Q . 2 5 5  
0.454 s n o  - 2 s  n 5 9  M ~ 2 . 7 1  < 

ELEMENT STRESSES AN0 PRlNC : IP4L STRESSES 

ELEMENT SX 

Fig.6.5. A sample of PLANAL output for the circular disk problem. 



Theoretical [23] 
x PLANAL 

Fig. 6.6. Stresses along the axes of circular disk 

subjected t o  compressive forces. 



--f- 
X 

Line of symmetry 

a. Dimensions and loading. 

b. Discretization of half the beam. 

c. The deformed beam. 

F i g .  6.7. Beam on elastic foundation. 



a .  Dimensions and loading. 

4 
a 
7J (TYP.) 

1 2 3 4 5 6 

b. Discret izat ion of half the pla te .  

Fig. 6.8. P la te  with edge beam. 
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port a r e  suppressed, and a "dumny" edge beam is  speci f ied  along the 

boundary portion t h a t  has no edge beam. A MIXED STRETCHING boundary con- 

d i t ion  is supeAmpaned along the l i n e  of symmetry. The resul t ing i n p u t  
cards are :  

BOUNDARY CONDITION ' BOUND ' DISPLACEMENT 
7 u 0.0 v 0.0 
BOUNDARY CONDITION ' BOUND'  EDGE BEAM 

1 TO 7 EB 3000000.0 AB 0.955 
7 TO 45 EB 0.0 AB 0.0 

45 TO 40 EB 0.0 AB 0.0 NY -1.0 
40 TO 1 EB 0.0 AB 0.0 
BOUNDARY CONDITION ' BOUND ' MIXED STRETCHING 
40 TO 1 UR 0.0 NR 0.0 ANGLE 0.0 

A f i n i t e  d i f ference solut ion is  obtained by Rosenhaupt [22] f o r  the  

above problem which he considers a masonry wall with a reinforced con- 

c r e t e  foundation beam acting as  a tension t i e .  St resses  ox, o , o and 
Y XY 

major principal d i rect ions  e l?  obtained from PLANAL and [22] a r e  l i s t e d  

in Table 6.1 i n  which the  nodes a r e  a s  named i n  Fig. 6.8b. The same 

s t resses  a r e  plotted in Fig. 6.9 f o r  comparison. The two s e t s  of r e su l t s  

a r e  very c lose  except along the f r e e  edges s ince  constant s t r a i n  t r i an -  

gular  elements a r e  used i n  PLANAL. a 

6.3. Examples in Bending. 

First, two shor t  examples a r e  given t o  i l l u s t r a t e  p la tes  i n  pure 

bending and pure twist. Then, in  s i x  examples following, rectangular  

p la tes  w i t h  various aspect  r a t i o s  a r e  analyzed f o r  d i f f e r en t  edge condi- 

t ions  and loadings. Results from PLANAL a r e  compared w i t h  the  theoret i -  

cal  values tabulated in Timoshenko and Woinowsky-Krieger [24]. 

Example 6.5. ReckanguRatL PRate i n  Pwte Bending. A rectangular  

p la te  of thickness h (Fig. 6.10a) is  placed i n  a s t a t e  of pure bending 

by prescribing, along the  boundary, displacement w and edge ro ta t ion  (3 

i- el  i s  measured from the  x-axis t o  the di rect ion of the  major 

principal  s t r e s s .  
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Table 6.1. Stresses and Principal Directions in Plate with Edge Beam. 



- r.221 
PLANAL 

Noke. I n  

t h i s  f i g u r e ,  

geometry o f  

p l a t e  i s  

d i s t o r t e d .  

c *  oxyt/p. 

F ig .  6.9. Comparison o f  s t resses i n  p l a t e  w i t h  edge beam. 



a .  Dimensions. b. Discretization. 

Fig. 6.10. Rectangular plate in pure bending and pure twist  

of the form 
2 2 w = c ( x  + y ) ,  

where c i s  an arbi t rary constant. The resulting bending s t ress  couple M 

i s  constant throughout the plate and i s  given by 

The twisting couple M i s  identically zero. 
XY 

Analyzing only a quarter of the plate ( F i g .  6.10b), we take a = 6 
5 in. ,  b = 4 i n . ,  h = 1 in . ,  c = 0.1, E = 10 psi and u = 0.2. The  values 

of w and f3 along the boundary can be computed from (6.1 ) .  In th i s  case, 
i f  we specify only w and (3, the s t r e s s  functions will be indeterminate. 

Hence, we also specify a quantity dual of a rigid body displacement. 
The i n p u t  cards for  boundary conditions are: 



BOUNDARY CONDITION ' BOUND ' DISPLACEMENT 
1 W 0.0 R 0.0 
4 W 0.225 R 0.0 
7 NEG W 0.900 R 0.0 
7 POS W 0.900 R 0.6 
8 W 1.000 R 0.6 
9 NEG W 1.300 R 0.6 
9 POS W 1.300 R 0.4 
6 6nl 0.625 R 0.4 
3 NEG W 0.400 R 0.4 
3 POS W 0.400 R 0.0 
2 W 0.100 R 0.0 
BOUNDARY CONDITION ' BOUND ' FUNCTION 
4 U 0.0 V 0.0 
BOUNDARY CONDITION ' BOUND' MIXED BENDING 
9 POS CHI 0.0 ANGLE 0.0 
6 UR 0.0 CHI 0.0 ANGLE 0.0 
3 NEG CHI 0.0 ANGLE 0.0 

Stress couples from PLANAL a re  Mx = My = -2083 1b- in. / in .  and M 
XY 

= 0 a t  a l l  nodes, which a re  i n  agreement w i t h  t h e o r e t i c a l  values. a 

Example 6.6. Recdangulkh Pkkte i r z  Pwe T w h t .  The p l a t e  i n  Exam- 

p l e  6.5 may be placed i n  a s t a t e  o f  pure t w i s t  by p resc r ib ing  along the  

boundary w and P o f  t he  form 

W = cxy, 

P = - w  
,n* 

The r e s u l t i n g  bending s t ress  couple i s  i d e n t i c a l l y  zero and the  t w i s t i n g  

couple i s  g iven by 

Proceeding as i n  Example 6.5, we ob ta in  from PLANAL Mx = My = 0 and M 
XY 

= - 694.4 16- in. / in ,  a t  a l l  nodes, which a re  i n  agreement w i t h  t h e o r e t i -  

c a l  values. m 

ExmpLe 6.7. A Uni&om.ty Loaded Long PlaXe. A long p l a t e d  f i x e d  

a t  i t s  ends i s  subjected t o  a un i fo rm ly  d i s t r i b u t e d  load p (F ig .  6.11a). 

When b i s  small compared t o  a, the  p l a t e  behaves l i k e  a f ixed-ended beam. 

A s t a t i c a l l y  equ iva len t  load may be supp l ied  i n  t he  form o f  an e f f e c t i v e  



a. Plan and elevation. 

c.  Moments along the x-axis. 

b. Discretization. 

- Theoretical 

PLANAL 

Line of 

'--x --x I I 

Fig. 6.71. A uniformly loaded long plate.  



I edge shear Q = 7 pb applied along the  two f r ee  edges. The pla te  i s  d i s -  

cre t ized as  shown i n  Fig. 6.11b and the values of a = 16 i n . ,  b = 1 i n . ,  
p = 1 psi a re  taken i n  the  PLANAL analysis .  Input cards f o r  boundary 
conditions are :  

BOUNDARY CONDITION ' BOUND ' FIXED SUPPORT 
33 TO 34 

2 T 0  1 
BOUNDARY CONDITION ' BOUND 'STRESS 

1 TO 33 Q -0.5 
34 TO 2 Q -0.5 

The moments from PLANAL a r e  plotted i n  Fig. 6 . 1 1 ~  and they compare 

closely w i t h  the theoret ical  val ues . fa 

Example 6.8. RecXunguRatL P i k t u  Luith Simply S u p p a d e d  E d g u .  A 

homogeneous, i sotropic rectangular p la te  is simply supported a1 ong i t s  

edges (Fig. 6.12). Cases w i t h  d i f f e r en t  aspect r a t i o s  (a : b) and under 

5 d i f f e r en t  loadings a r e  analyzed in  the  PLANAL System fo r  E = 10 psi and 

v = 0.3. 

q Uniform load 

q, Hydrostatic 
1 oad 

Fig. 6.12. Dimensions and loadings of a rectangular p la te .  



Uvtidonm Load. When the  pla te  i s  under uniform load, the  coordinate 

axes a r e  l i ne s  of synunetry; therefore,  only the  f i r s t  quadrant of the 

pla te  i s  analyzed. We take b = 1 i n .  and q = 1 psi ,  and the aspect 

r a t i o s  a/b of 1 and 2,  using a 4 x 4 gr id  shown i n  Fig. 6.13. The input 

cards f o r  boundary conditions and loading are :  

BOUNDARY CONDITION ' B O U N D '  SYMMETRY 
1 TO 21 
5 T 0  1 

BOUNDARY CONDITION ' B O U N D  YIMPLE SUPPORT 
21 TO 5 
LOADING 
UNIFORM INTENSITY Z 1 .0 

The bending par t i cu la r  solution functions Kx and K , and q ( fo r  checking) 
Y 

a t  each node a r e  constructed in te rna l ly  by the  system, and the r e su l t s  

f o r  a/b = 1 a r e  shown i n  Fig. 6.14. A sample of the output from the 

system f o r  a/b = 1 i s  shown i n  Fig. 6.15. Results f o r  both aspect  

r a t i o s  a r e  shown in Fig. 6.16. 

4 x 4 Grid 6 x 4 Grid 

8 x 4 Grid 

Fig. 6.13. Grid patterns i n  rectangular p la tes .  
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R E N D I N G  P b R T I  CULAR S O L U T  I a N  C O N S T R U C T E D  FROM FO\JK I E R  SERIES. 

Y A X  I I"IUr.1 M A X I  M U M  
SlJIvlPAT I O N  L O A D  F U N C T I O N  S U V M A T  I O N  

N O D E  K X  = K Y  I K D E X  ( FOR C H E C K I N G )  I N D E X  

Fig. 6.14. Par t icular  solution functions f o r  a quadrant of 

a uniformly loaded rectangular p la te .  

ffydnua&&ic Load. When the  p la te  is  under a hydrostatic load which 

varies l inear ly  in x, the x-axis is the l i n e  of symmetry. Half of the 

pla te  i s  analyzed, w i t h  b = 1 i n .  and q, = 1 psi .  The gr ids  f o r  aspect 

r a t i o s  a/b of 0.5, 1,  and 2 a r e  the 4 x 4, 8 x 4, and 8 x 4 g r ids ,  re- 
spectively,  i n  Fig. 6.13. The input cards f o r  loading when a/b = 1 are: 

LOADING 
NODES 1 5 INTENSITY Z 0.0 
NODE 25 INTENSITY Z 1.0 

The r e su l t s  a r e  presented i n  Fig. 6.17. Bl 
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PLANAL 'U44LS'L l '  'HALF S Y  HALF U h I T  LENGTH.' 

*+ RENUING P b R T I C U L h  SOLdTlCh CCNSTUkJCTEO FKOM FIIIIKIER SERIES. 

VAXIMUIl MAX I MUW 
SUMMIIT ION LOAD FUNCTION SUMMAT ION 

NDUE K X  = KY IniDtX IFOR CHECFING) IYDEX 

NODAL STRESS FUNCTIONS 

** GRID PPTTERN FOR DIFFERENTIATION. 

L INES PbRALLEL TO X-AXIS. 

L INES PbRAL' EL TC Y-AXIS. 

NODAL MCMENTS AND PRINCIPAL PCMENTS 

NODE NX MY MXY M 1 M2 THETA-1 f X  TO H11 

1 0.4ROeF-01 fl.4AORE-01 0.1759F-07 0.48ORE-01 0.48ORF-01 0.594 RAD = 3 4  D 3 H 22.26 S . . . - . . . . . . . . . . . - . ...-.- ~- -. --.- - 

2 0.4576E-01 0.4554E-01 0.9313E-04 0.4579E-01 0.4550E-01 0.347 RAD 1 9  0 5 3  M 30.37 S 
3 0.3727E-01 0.3904E-01 -0.4265E-03 0.3914E-01 0.3718E-01 4.938 RAD = 2 8 2  D 54 H 3 - 1 6  S 
4 0.2227E-01 C.7484E-C1 0.4573E-03 0.2510E-01 0.2201E-01 1.276 RAD = 73 D 7 H 13.80 5 
5 -0.398CE-02 0.1914E-08 -0.1460E-02 0.4784E-03 -0.4459E-CZ 5.029 RAO = 2 8 8  0 8 N 9.55 S 

ar~nc - l  n rfisnc-nl -3 WD = 7 0  0 6 H 1 2 - 7 7  S 
NODAL CURVATURES AND PRINCIPAL CuRVbTURES 

NODE CHI-X CHI-Y CHI-XY CHI-1  CHI-2 THETA-1 I X  TO CHI-11 

0.4039E-05 0.4039E-05 0.1964E-11 0.4039E-05 0.4039E-05 0.594 RAD = 3 4  0 3 H 22.26 5 
0.3852E-05 C.3817E-05 0.1453E-07 0.3857E-05 0.3812E-05 0.347 RAD = 1 9  0 53  H 30.37 S 
0.3068E-05 C.3343E-05 -0.6653E-07 0.3358E-05 0.3052E-05 4.938 RAD = 2 8 2  D 5 4  M 3.16 S 
0.1779E-05 C.2179E-05 0.1337E-06 0.2219E-05 0.1738E-05 1.276 RAO = 7 5  0 7 N 13.80 S 

-0.4776E-06 0.1433E-06 -O.ffZ.S:S?$ 0.2179E-06 -0.5523E-06 5.029 RAD = 2 8 8  D 8 M 9.55 S --.-- L ~ ~ L Z C - ~ L  ~ - ~ R l 7 F - 0 5  1.224 RAD = 70 D 6 M 12.27 S 

NODAL MOMENTS - HCMDGEHEOUS, PARTICULAR* AND TOTAL. 

NCOE MXH MXP MX MYH MYP MY 

5 -0.3980E-02 0.0 -0.398OE-02 0.1914E-08 0.0 0.1914E-08 
1 L554F-01 -0.2396E-01 0.6972E-01 0.4576E-01 

ELEMEhT MOMENTS PNC PRINCIPAL VCPENTS 

ELEMENT M X M Y MXY M 1 M2 THETA-1 I X  1 0  M1) 

1 0 . 4 6 7 1 ~ - 0 1  0 . 4 5 ~ 4 ~ - 0 1  - 0 . 8 3 2 0 ~ - 0 3  0 . 4 7 0 5 ~ - 0 1  0 . 4 4 7 0 ~ - 0 1  5.890 R A D  = 3 3 7  0 3 0  H 0.88 s 
2 0.4504E-01 0.4671E-01 -0.8320E-03 0.4705E-01 0.4470E-C1 5.105 RAD = 2 4 2  0 3 0  M 0-C S 
3 0.4124E-01 0.4126E-01 -0.8320E-03 0.4208E-01 0.4042E-01 5.494 RAD = 3 1 4  D 46 M 30.53 S 
4 0.3827E-01 0.4151E-01 -0.4583E-02 0.4475E-01 0.3503E-01 5.328 RAD = 305 D 15 M 57.13 S 
5 0.3116E-01 0.3060E-01 -0.5907E-02 0.3679E-01 0.2496E-01 5.522 RAD = 316 O 2 2  M 22.09 5 - " 7 7 ? 9 C - " '  -" 70"7'-n7 n.3755F-01 0.2444E-01 4.943 RPD = 2 8 3  D 1 4  M 0.23 S 

ELEMENT CURVPTURES AN0 PRINCIPAL CURVATURES 

ELEMENT CHI-X CHI-Y CHI-XY CHI-1  CHI -2  THETA-1 ( X  TO CHI-1) 

1 0.3983E-C5 C.3724E-05 -0.129HE-06 C.3987E-05 -0.4225E-08 5.890 RAD = 337 D 30 M 0.88 S 
2 0.3724E-05 0.3983E-05 -0.1298E-06 0.3728E-05 -0.4518E-08 5.105 RAD = 2 9 2  0 3 0  M 0.C S 
3 0.3464E-05 C.3460E-05 -0.1298E-06 0.3469E-05 -0.4856E-08 5.494 RAl) = 3 1 4  0 4 6  M 30.53 5 
4 0.3098E-05 O.?bC3E-05 -0.7150E-06 0.3255E-05 -0.1570E-06 5.328 RAU = 305 D 15 M 57.13 S 
5 0.7638E-05 0.255OE-05 -0.9215E-06 0.2928E-05 -0.2900E-06 5.522 RAD = 3 1 6  D 2 2  H 22.09 S - - - - - - - - -  - n r o - n c - n c  -n 1 ? a n c - n 7  n . s n  a n 0  = I n 3  o 1 4  N 0.23 5 

ELEMENT MOMENTS - HCYCGENEOUS. PPRTICULAR. AND TOTAL. 

ELEMENT VXH MXP MX MYH MYP MY 

1 -0.2912E-01 0.6983E-01 0.4671E-01 -0.2479E-01 0.6983E-01 0.4504E-Dl 
2 -0.2479E-01 0.6983E-01 0.4504E-01 -0.2312E-01 0.6983E-Dl 0.4671E-01 
3 -0.2314E-01 0.6438E-01 0.4124E-01 -0.2312E-01 0.6438E-01 0.4126E-01 
4 -0.2100E-01 0.5927E-01 0.3827E-01 -0.1776E-01 0.5927E-01 0.4151E-01 
5 -0.1719E-01 0.4836E-01 0.3116E-01 -0.1776E-01 0.4836E-01 0.306OE-01 - - - 2  - van7c-n l  - n . o 7 ~ 7 ~ - n 7  n . 4 1 8 7 ~ - 0 1  0 . 3 2 1 ~ ~ - 0 1  

F I N I S H  

GOOD-BYE 

Fig. 6.15. A sample of PLANAL output for a bending problem. 



a .  For a/b = 1. 

- Ref. [24] 

x PLANAL 

Fig. 6 .I 6. Bending moments of simply supported rectangular 

plates under uniform load, v = 0.3. 



- Ref. [24] 

PLANAL 

Aspect r a t i o s  a /b  of curves  
a r e  shown i n  paren theses .  

Fig. 6.17. Bending moments of simply supported rectangul  aim p l a t e s  

under h y d r o s t a t i c  load ,  v = 0.3. 



Example 6.9. SquatLe. Plate lui;th Fkxed Eclgen. A square p l a te  (Fig. 

6.12) w i th  f i x e d  edges i s  subjected t o  a uniform load q. Only a quarter 

o f  the p l a te  i s  analyzed, using a 4 x 4 g r i d  (Fig. 6.13). For the values 

5 o f  a = b = 1 in., E = 10 psi,  v = 0.3, and q = 1 psi,  the inpu t  cards 

f o r  boundary condit ions and loading are: 

BOUNDARY CONDITION ' BOUND ' SYMMETRY 
1 TO 21 
5 T 0  1 

BOUNDARY CONDITION 'BOUND' FIXED SUPPORT 
21 TO 5 
LOADING 
UNIFORM INTENSITY Z 1.0 

The resu l t s  are p l o t t e d  i n  Fig. 6.18. 

I 
Fig. 6.18. Bending moments of a square p l a te  w i th  f ixed edges 

under uniform load, v = 0.3. 



Example 6.10. Squatre PRa;te utiRh Two Edgu Simply Suppanked and Two 

Edgu fixed. A homogeneous, i s o t r o p i c  square p l a t e  i s  simply supported 

along the  edges para1 l e l  t o  the  y-axis  and f i x e d  along the  others (Fig. 

6.12). It i s  subjected t o  a uni form load and we analyze the  f i r s t  quad- 

5 r a n t  o f  the  p l a t e  f o r  a = b = 1 in.,  E = 10 psi ,  v = 0.3, and q = 1 p s i .  

Using the  4 x 4 g r i d  i n  F ig.  6.13, t he  i n p u t  cards f o r  boundary condi- 

t i o n s  are: 

BOUNDARY CONDITION 'BOUND' SYMMETRY 
1 TO 21 
5 T 0  1 
BOUNDARY CONDITION 'BOUND' SIMPLE SUPPORT 
21 TO 25 
BOUNDARY CONDITION ' BOUND ' FIXED SUPPORT 
25 TO 5 

The r e s u l t s  a re  p l o t t e d  i n  F ig.  6.19. 

Fig. 6.19. Bending moments o f  a square p l a t e  w i t h  two edges 

simply supported and two edges f i xed ,  v = 0.3. 
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Example 6.1 1 . Rectang uRah PlaXe w L t h  T h e e  Edg en Simply Suppatrked 

and One Edge Fixed. A homogeneous, i so t rop ic  rectangular  p la te  shown i n  
Fig. 6.12 i s  f ixed along the  edge x = a12 and simply supported along the 

others.  I t  i s  subjected t o  a uniform load and a hydrostat ic load t h a t  

varies l i nea r l y  i n  x. The x-axis i s  the  l i n e  of synmetry, and we analyze 

5 half the pla te  f o r  b = 1 i n . ,  E = 10 ps i ,  and v = 0.3. 

UvLidonm Load. We consider the  aspect  r a t i o s  a/b of 0.75 and 1 

(using the 6 x 4 and 8 x 4 g r ids ,  respectively,  i n  Fig. 6.13) f o r  q = 1 

psi. The i n p u t  cards f o r  boundary conditions when a/b = 1 are:  

BOUNDARY CONDITION ' BOUND ' SYMMETRY 
1 TO 41 
BOUNDARY CONDITION 'BOUND' FIXED SUPPORT 
41 TO 45 
BOUNDARY CONDITION 'BOUND'  SIMPLE SUPPORT 
45 TO 1 

The r e su l t s  a r e  shown i n  Fig. 6.20. 

f f y d m a W c  Load. We analyze the  case when a = b = 1 i n .  and q, = 

1 psi (8 x 4 gr id  used), and the r e su l t s  a r e  p lot ted  in Fig. 6.21. I 

Example 6.1 2. Re&nguRah P&a Undett C e W  Laah. A homoge- 

neous, i so t rop ic  p la te  is  subjected t o  a concentrated load P applied a t  

the  center  (Fig. 6.22a). Because of symmetry, only the  f i r s t  quadrant 

of the  pla te  is analyzed. The quadrant is discre t ized i n  two patterns 

(Fig. 6.22b): Grid A has a uniform mesh and gr id  B has a f i n e r  mesh a t  

5 the load point. The p la te  is  analyzed f o r  b = 1 i n . ,  E = 10 psi, v = 

0.3, and P = 1 lb .  

S h p l y  3uppotr;ted Edga. The case when a l l  edges a r e  simply sup- 

ported a r e  analyzed f o r  aspect  r a t i o s  a/b of 1 and 2, and using both 

g r ids  A and B. The input cards f o r  boundary conditions and loading f o r  

gr id  B a re :  

BOUNDARY CONDITION 'BOUND' SYMMETRY 
1 TO 30 

14 TO 1 
BOUNDARY CONDITION 'BOUND' SIMPLE SUPPORT 
30 TO 14 
LOADING 
NODE 1 FORCE Z 1.0 



(3 Ref. [24J 
-x- PLANAL 

Aspect r a t i o s  a /b  of curves  

a r e  shown i n  paren theses .  

X - 
a 

k 
I 

Fig. 6.20. Bending moments of  r ec t angu la r  p l a t e s  with three edges simply 
supported and one edge f ixed  under uniform load ,  v = 0.3. 



0 Ref. [24] 
- x- PLANAL 

Fig. 6.21. Bending moments o f  a square p l a t e  w i t h  th ree  edges s imply 

supported and one edge f i x e d  under hyd ros ta t i c  load, v = 0.3. 

The r e s u l t s  a re  shown i n  F ig.  6.23. 

Fixed E d g a .  The case w i t h  a l l  edges f i xed  i s  a l so  analyzed f o r  

aspect r a t i o s  a/b of 1 and 2, and us ing  both g r i d s .  The r e s u l t s  a re  

shown i n  F ig.  6.24. 

I t  can be seen t h a t  r e s u l t s  from g r i d  B w i t h  the  f i n e r  mesh approach 

the  approximations a t  t he  v i n c i n i t y  of l oad  po in t .  I 



Edges simply supported 

Edges f ixed  

a .  Dimensions and loading.  

1 6 11 1 6  2 1 

Grid A 
1 1 5  2 0 2 5 3 0 

Grid B 

b. D i s c r e t i z a t i o n  of a q u a r t e r  of the p l a t e .  

Fig. 6.22. Rectangular p l a t e s  under c e n t r a l  loads .  



- --- - - - - - Approximati on [24] 

------ PLANAL - g r i d  B 
--+-- PLANAL - g r i d  A 

a. For a/b = 1. 

Fig. 6.23. Bending moments of rec tangu lar  p la tes  w i t h  simply 

supported edges under cen t ra l  load, v = 0.3. 



Clr 
P 

0.4 
---------- Approximation [24] 
--x- PLANAL - g r i d  B 
--+.--- PLANAL - g r i d  A 

0.2 

0 

b. For a /b  = 2. 

Fig.  6.23. Continued. 



a .  For a /b  = 1.  

Fig.  6.24. Bending moments of r ec t angu la r  p l a t e s  with f ixed  

edges under c e n t r a l  load,  v = 0.3. 



0 Theore t ica l  [24] 

Approximati on [24] 
- X- PLANAL - g r i d  B 

- -+-- PLANAL - g r i d  A 

f 

b. For a/b = 2. 

F ig.  6.24. Continued. 



6.4. Compu tcltion Time. 

Computation time required fo r  execution in the PLANAL System i s  
studied in a sample of 21 problems. These problems were executed on the 
IBM 360/65 computer a t  the Information Processing Center, Massachusetts 

Ins t i tu te  of Technology i n  August, 1969. Most of the examples in the 
previous sections are included in th is  sample. 

Total execution time (time elapse between entry into and e x i t  from 
PLANAL) depends on the number of nodes, number of elements, boundary 
conditions, and other factors.  A reasonably simple time study i s  to  
plot total  execution time versus the total  number of nodes. Such a plot 
for  the sample taken i s  shown in Fig. 6.25. 

Execution time for  assembling the global coefficient matrix i s  de- 
pendent on both the number of elements and number of nodes. Modifica- 
tion for  boundary conditions takes between two and s ix seconds in the 
sample. Execution time for  solution of the system equations i s  approx- 

imately proportional to  the square of NSOL, the number of nodes without 
completely prescribed displacements or s t ress  functions. The solution 

operation takes between 0.4 and 13.7 seconds. When the construction of 

particular solution functions i s  required, i t  takes about (1 + 0.055n) 
seconds, where n is  the total  number of nodes. 

On the same computer, a sample of nine plate bending problems are  
executed i n  the STRUDL System [I81 using f l a t  plate triangular elements 
termed 'CCPT'. Total execution times fo r  th i s  sample are also plotted 
in F i g .  6.25. A STRUDL bending problem i s  solved by a displacement meth- 
od with three unknowns per node, whereas a PLANAL bending problem i s  
solved by a force method w i t h  two unknowns per node. While the time 

difference may not be ent i rely due to  the difference in the numbers of 
unknowns, the former apparently takes longer to  solve than the l a t t e r  hav- 
ing the same number of nodes. 

In addition t o  the total  execution time, there i s  an overhead of 

about 20 seconds per j o b  submitted to  the computer. I t  takes 10 seconds 

for  control t o  reach ICES and another 10 seconds to  reach PLANAL (or 
STRUDL) . 



T o t a l  number o f  nodes 

Fig. 6.25. Computation times f o r  samples  o f  PLANAL and STRUDL problems.  



CHAPTER 7 

CONCLUSIONS A N D  R E C O M M E N D A T I O N S  

7.1. Conclwsions. 

The dual f i n i t e  element method f o r  analysis of plate structures i s  
implemented into the PLANAL System. The present form of the system i s  
capable of solving problems of plate stretching and bending (Section 
5 .2 ) .  

In  the stretching problem, the system can analyze an arbi t rary 
plate under arbi t rary loading. Results are  obtained in the form of nod- 
al  displacements, from which s t ra ins  and then s t resses  a re  computed. 
These resul ts  are  in good agreement with theoretical values when they 
are  avai 1 abl e . 

In the bending problem when particular solutions are  known, or not 
required a t  a l l ,  the system can analyze an arbi t rary plate under arbi-  
t ra ry  loading. When particular solutions a re  not known, standard pro- 
cedure i s  implemented into the system to generate such solutions for  
l inear  loadings and rectangular plates. Results are  obtained in the 
form of s t ress  functions a t  the nodes, from which moments and curvatures 
are computed. In the examples studied, resul ts  from the system agree 
closely with theoretical values. Since two unknowns per node are  taken 
i n  th i s  method, shorter computation time i n  solving the system equations 
i s  realized when compared to  a displacement method in which three un-  
knowns per node are  taken. 



Programming capab i l  i tes  of t he  In teg ra ted  C i v i l  Engineering System 

a re  u t i l i z e d  i n  t he  PLANAL System. Features of a problem-oriented l an -  

guage, u n r e s t r i c t e d  problem s ize,  and e f f i c i e n t  programming management 

a r e  t h e  r e s u l t s  o f  us ing  ICES. The advantages o f  ICES i n  t he  develop- 

ment o f  s t r u c t u r a l  ana l ys i s  systems a re  demonstrated. 

Para1 l e l  a lgor i thms a re  implemented t o  perform a number of opera- 

t i o n s  when the  g loba l  c o e f f i c i e n t  m a t r i x  i s  s y m e t r i c  and when i t  i s  

non-symmetric. These operat ions a re  t h e  assemblage o f  t h e  g loba l  coef-  

f i c i e n t  mat r i x ,  m o d i f i c a t i o n  f o r  boundary cond i t ions ,  and s o l u t i o n  o f  

t he  system equations. 

7.2. Recommendations. 

Constant s t r a i n  t r i a n g u l a r  elements a re  used i n  t he  development o f  

t h e  dual  method i n  t he  system. Higher o rder  elements, such as l i n e a r  

s t r a i n  t r i ang les ,  may be added t o  improve the  ana l ys i s  c a p a b i l i t i e s .  

I n  a d d i t i o n  t o  t he  boundary cond i t i ons  t h a t  can be processed by t h e  

present  system, a few more may be included, such as: d i s l o c a t i o n s  i n  

mul t ip ly-connected p la tes  i n  s t re t ch ing ;  edge beam and e l a s t i c  boundary 

i n  bending. A lgor i thm f o r  o b t a i n i n g  d e f l e c t i o n s  i n  the  bending problem 

may be implemented i n t o  t h e  system through i n t e g r a t i o n  from the  computed 

curvatures.  

Standard procedures f o r  ob ta in ing  p a r t i c u l a r  s o l u t i o n s  i n  t he  bend- 

i n g  problem f o r  p l a t e s  w i t h  a r b i t r a r y  geometry and l oad ing  may be inves-  

t i g a t e d  fu r the r .  E l i a s  suggests t h a t  a f i n i t e  element method w i t h  one 

unknown moment per  node may be used [ l o ] .  
The dual f i n i t e  element method i s  formulated f o r  t h e  p l a t e  s t r e t c h -  

i n g  and bending problems i n  t h i s  work. The method may be r e a d i l y  ex- 

tended t o  shal low s h e l l s  as we11 as s h e l l s  approximated by f l a t  t r i angu -  

1 a r  elements . 
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APPENDIX A 

NUMERICAL APPROXIMATIONS 

When computations of certain quantities are made in the PLANAL 
System, numerical differentiation, integration, and interpolation are 
approximated by Lagrangian methods [I 31. For exampl e, nodal strains 
may be obtained from nodal displacements through differentiation. Using 
Langrange's interpolation formula of second degree, we obtain the follow- 
ing approximations for a function f having ordinates fl, fp, fg at xl, 
, x , respectively (Fig. A.1). X2 3 

Fig. A.1. Function approximated by a parabola. 

f ,  parabol ic 

f3 

. - 
1 2 X3 

X 



Numerical Differentiation. 

Numerical Integration. 

Numerical Interpol ation. 

where ei = x - xi. 



APPENDIX B 

SUMMARY OF PLANAL COMMANDS 

A summary o f  a l l  t h e  commands i n  PLANAL a r e  1 i s t e d  h e r e  f o r  u s e r ' s  

r e f e r e n c e .  T h e s e  commands a r e  e x p l a i n e d  i n  d e t a i l  i n  C h a p t e r  5. 

PLANAL [ ' n a m e ' ]  [ ' t i t l e ' ]  

ALL  1 COMMON 

PLDEBUG - 

2 .  Type S p e c i d i u o n .  

PLATE STRETCHING 
TYPE 1 - PLATE BENDING 

NONSYMMETR I CAL 

INCHES, FEET, FJ, 'CENTIMETERS, (3'4-, o r  METERS - - 
POUNDS, E, UJS,'TOJS, KILOGRAMS, KG, o r  MTON - - - 
RADIANS , o r  DEGREES - 
FAHRENHEIT, o r  CENTIGRADE - 
SECONDS, MIJUTES, or 'HOURS - - 



4 .  Geam&g and T a p a l o g q .  

NODE COORDINATES - - 
BOUNDARY 

[node name] - x [ v x l  1 ITeave blank 

ELEMENT INCIDENCES - - 
[element name] [node I] [node 21 [node 31 

BOUNDARY INCIDENCES 

[boundary name] [node name] 

5. ELeme& P t t u p ~ ~ X a  S p e c i d i c a t i o n .  

ELEMENT PROPERTIES TYPE [ ' t y p e ' ]  - - - 
[element name 1 i s t ]  - THICKNESS [vt ]  .EX- [vex] EJ- [v,~] - 
PX [v  ] PY [v ] CTX [v,,] CTY [vcy] 5 [vg] DENSITY [vd] - 

PX - PY - - 

(1 ) BOUNDARY CONDITION [ 'boundary name '1 DISPLACEMENT 

[boundary p o r t i o n ]  - U [vu] 1 [v,] - W [v,] - R [vr] 

( 2 )  BOUNDARY CONDITION [ 'boundary name'] STRESS 

[boundary p o r t i o n ]  - NX [vnx] [v ] Q [vq] El [v,] - nY 
ROTATION [vr] - 

(3)  BOUNDARY CONDITION [ 'boundary name'] -- MIXED STRETCHING 

[boundary p o r t i o n ]  !JR- [v,,] [vnr] - ANGLE [va] 

(4)  BOUNDARY CONDITION [ ' boundary name '1 ELASTIC 

[boundary p o r t i o n 1  US Cvusl vs [ v v s l  KXX Cvkxxl Kxu Cvkxyl - 

(5 )  BOUNDARY CONDITION [ ' boundary name ' EDGE BEAM 

[boundary p o r t i o n ]  - NX [vnx] - NY [v ] EB [v,] - AB [va] - I Z  [vi] 
"Y - 



( 6 )  BOUNDARY CONDITION [ ' boundary name ' ] STRAIN 

[boundary portion] EPSILON [ve] CHI [v,] N A T I O N  [v r l  

( 7 )  BOUNDARY CONDITION [ ' boundary name '1 FUNCTION 

[boundary portion] I! [vu] !! [v,] 

(8) BOUNDARY CONDITION [ ' boundary name' ] MIXED BENDING 

[boundary portion] & [vur] [v,] K L E  [v,] 

(9 )  BOUNDARY CONDITION ['boundary name'] SIMPLE SUPPORT 

[boundary portion] 

(1 0 )  BOUNDARY CONDITION [ ' boundary name '1 N E D  SUPPORT 

[boundary portion] 

(1 1 ) BOUNDARY CONDITION [ ' boundary name '1 fFEE 

[boundary portion] 

(1 2)  BOUNDARY CONDITION [ ' boundary name '1 Z M E T R Y  

[boundary portion] 

7 .  Loading S p e c i & i c a t i a n .  

LOAD I NG - 

NODES [node names] - [v,] 1 [v,] 2 [ v z l  
UNIFORM - 

8. P U f t t i ~ W  S o U o n  f u n d o m  don fie Bend ing  PtrabRem. 

BEND I NG PARTICULAR SOLUTION 

NODES [node names] !U- [K,] [Ky] [ K  ] KYY [ K ~ , ~ ]  - X , X  - 



9. Ou/tpu/t and A n d y ~ d  Camrnanh . 

NODES 
- oUTPUT / GMENTS - 

DISPLACEMENTS - FUNCTIONS 

STRAINS - MOMENTS - 
STRESSES CURVATURES - 
PRINCIPAL STRAIN PRINCIPAL MOMENTS - - 
PRINCIPAL STRESSES - - PRINCIPAL - CURVA- 
ALL - TURES 

ALL  - 
(in stretching) (in bending) 

F I N I T E  ELEMENT ANALYSIS 

F I N I S H  



APPENDIX C 

COMMON MAP 

The COMMON map o f  t he  PLANAL System i s  presented i n  t h i s  appendix. 

ICES requ i res  t h a t  a l l  var iab les  used i n  t h e  Command D e f i n i t i o n  Blocks 

(programs w r i t t e n  i n  CDL) and a1 1  dynamic arrays must appear i n  COMMON. 

The re1 a t i v e  addresses and the  displacements (both i n  hexadecimals 

and decimals) from the beginning of COMMON o f  a l l  such var iab les  and 

arrays are  l i s t e d .  When the  mode of a  va r iab le  [ I 6 1  does n o t  conform 

t o  the  FORTRAN convention o f  naming a  va r iab le ,  i t  w i l l  be so ind ica ted:  

D = double word, H = h a l f  word in teger ,  R = r e a l  var iab le .  A  dynamic 

a r ray  base p o i n t e r  i s  i nd i ca ted  by P. Remarks o r  b r i e f  d e f i n i t i o n s  o f  

the  var iab les  are  a l so  given. Dummy areas which are  n o t  used by t h e  

system are  a l so  shown. 

Re1 . Displacement 
Name Add. Hex. Dec. Remarks 

I C E S  COMMON P O O L  

Q Q D U B (  1) 1 000 
Q Q D U B ( 2  1 2 004 
I COM 3 008 
I ERROR 4 O O C  
I C O M L  5 010 
QQCOM ( 1 1 6 014  

e e e 

0 e e 

Q Q C O M 1 7 5 )  80  1 3 C  



Re1 . Displacement 
Name Add. Hex. Dec. Remarks 

S C R A T C H  COMMOM P O O L  

DUMMY. 

0 

DUMMY e 

N O e  O F  N O D E S  A T  W H I C H  D I S P L A C E M E N T S  
A R E  N O T  F U L L Y  P R E S C R I B E D .  

N O e  O F  P R E S C R I B E D  D I S P m  COMPONENTSm 
NO. O F  I N D E P E N D E N T  L O A D I N G .  

C O N D I T I O N S b  
DUMMY I . 

N S O L  

N D I S  
N L D S I  

Q 

DUMMY e 

S E M I B A N D W I D T H  O F  H Y P E R C O L U M N S  O F  
C O E F F I C I F N T  M A T R I  X e  

B I T  P I C T U R E  O F  C O E F F I C I E N T  M A T I I I X .  
D I A G O N A L  S U B M A T R I C E S  O F  COEFm F A T .  
O F F - D I A G .  S U B M A T R I C E S  O F  C O E F Q  M A T e  
NON-ZERO S U B M A T R I C E S  O F  E A C H  ROW O F  

C O E F F I C I E N T  M A T R I X .  
R I G H T - H A N D  MEMBERS OF M A T e  EQm 
N O N - S Y M M E T R I C  C O E F Q  M A T R I X  E L E M E N T S .  
NON-ZERO ROWS I N  E A C H  COLUMN O F  

N O N - S Y % M E T R I C  COEF.  M A T R I X .  
NON-ZERO COLUMNS I N  E A C H  ROW O F  

N O N - S Y M M E T R I C  C O E F e  M A T R I X .  
I N V E R S E  U S E  O F  I C U R E L e  

I B A N D  

I F D T  
K D I A G  
K O F D G  
I O F D G  

K P P R  I 
F C M A T  
I C U R E L  

I R E L l  

I C U I N T  

N O N - D I C T I O N A R Y  COMMON POOL 

2 5 7  400  1 0 2 4  DUMMY. 

m b . . 
262 414 1044 DUMMY. 
2 6 3  418  1 0 4 8  S C A N N I N G  WODE I Y D I C A T O R .  I S C A N  



Re1 . 
Add. 
2 6 4  
265  
2 6 6  
2 6 7  
2 6 8  
2 6 9  

Di sp l  acement 
Hex. Dec. 
4 1 C  1 0 5 2  
4 2 0  1 0 5 6  
4 2 4  1 0 6 0  
4 2 8  1 0 6 4  
42C 1 0 6 8  
4 3 0  1 0 7 2  

Name Remarks 
DUMMY e 

DUMMY e 

DUMMY e 

I N D I C A T O R  FOR I N T E R M E D I A T E  OUTPUT.  
S I Z E  O F  D A T A  P O O L e  
DUMMY e 

I DUMP 
I P O O L  

. 
DUMMY. 
C O N V E R S I O N  FACTOR FOR LENGTH.  
C O N V E R S I O N  FACTOR FOR WEIGHT.  
C O N V E R S I O N  FACTOR FOR ANGLE. 
C O N V E R S I O N  FACTOR FOR T E M P E A T U R E e  
C O N V E R S I O N  FACTOR FOR T I M E .  
DUMMY e 

C F L E N  
CFWT 
C F A N G  
C F T E M P  
C F T  I M E  

e 

DUMMY 

D I C T I O N A R Y  COMMON POOL 

L O A D I N G  N A M E S *  
DUMMY 
T O T A L  NO. O F  L O A D I N G S *  
L O A D I N G  TYPE.  
DUMMY 0 

L O A D I N G  L I S T e  
L O A D I N G  T I T L E S .  
NODE NAMES. 
DUMMY e 

T O T A L  NOe O F  NODES. 
NODE TYPE.  
DUMMY 
DUMMY 
DUMMY 
NODE C O O R D I N A T E S e  
N O D A L  LOADS.  
E X T e  NO. O F  NODES W I T H  S P E C e  L O A D *  
G E N E R A L  L O A D I N G  T Y P E e  
DUMMY e 

L E X T N  
L T Y P  

L D L  I S T  
L D T L E  
J T I D  

J E X T N  
J T Y P  

J T X Y Z  
J T L O D  
I D L D N D  
L O D T Y P  

e 

DUMMY e 

DUMMY e 

NOe O F  A C T I V E  L O A D I N G  C O N D I T I O N S e  
NO. O F  D E G R E E S  O F  F R E E D O M *  
P R O B L E M  T Y P E *  
DUMMY e 

0 

N L D S  
J F  
I D  



Re1 . Displacement 
Name Add. Hex. Dec. 

0 0 0 

4 0 9  6 6 0  1 6 3 2  
J I N T  PH 4 1 0  6 6 4  1 6 3 6  
JEXT PH 4 1 2  66C 1 6 4 4  

4 1 4  6 7 4  1 6 5 2  . e * 
0 . * 

4 3 9  6D8 1 7 5 2  
E L I D  PD 4 4 0  6DC 1 7 5 6  
ELTYP P 4 4 2  6 E 4  1 7 6 4  
ELPROP P 4 4 4  6EC 1 7 7 2  
ELTOP PH 4 4 6  6 F 4  1 7 8 0  
ELOADS P 4 4 8  6FC 1 7 8 8  
E L T O P l  PH 4 5 0  7 0 4  1 7 9 6  
I U N I P R  452 70C 1 8 0 4  
NDPROP PR 4 5 3  7 1 0  1 8 0 8  

4 5 5  7 1 8  1 8 1 6  
m 0 m 

* * m 

4 6 3  7 3 8  1 8 4 8  
NBXTEL 4 6 4  73C 1 8 5 2  
NBEL 4 6 5  7 4 0  1 8 5 6  
NSYM 4 6 6  7 4 4  1 8 6 0  
NGEN 4 6 7  7 4 8  1 8 6 4  
ELSTDE 4 6 8  74C 1 8 6 8  
ELSTDG 4 6 9  7 5 0  1 8 7 2  
ELSTCT 4 7 0  7 5 4  1 8 7 6  
ELSTDS 4 7 1  7 5 8  1 8 8 0  
ELSTPO 4 7 2  75C 1 8 8 4  

4 7 3  7 6 0  1 8 8 8  
4 7 4  7 6 4  1 8 9 2  
4 7 5  7 6 8  1 8 9 6  
4 7 6  76C 3 9 0 0  

ELSTMT P 4 7 7  7 7 0  1 9 0 4  
NODISP PR 4 7 9  7 7 8  1 9 1 2  
VALUEN P 4 8 1  7 8 0  1 9 2 0  
VALUEE P 4 8 3  7 8 8  1 9 2 8  
GRIDPR P 4 8 5  7 9 0  1 9 3 6  
KODOUT P 4 8 7  7 9 8  1 9 4 4  
G R I D  PH 4 8 9  7 A 0  1 9 5 2  
KPBSLN PH 4 9 1  7 A 8  1 9 6 0  
I DEBUG 4 9 3  7 8 0  1 9 6 8  
IPROB 4 9 4  7 8 4  1 9 7 2  
I BCON 4 9 5  7 8 8  1 9 7 6  
B D I D  PD 4 9 6  7RC 1 9 8 0  
BOCOND P 4 9 8  7 C 4  1 9 8 8  
PBNTEM P 500 7 C C  1996 
PBSOLN P 5 0 2  7 0 4  2 0 0 4  
PBSOLE P 5 0 4  7DC 2 0 1 2  
RINTND P 5 0 6  7E4 2 0 2 0  

Remarks 
a 

DUMMY e 

ARRAY I N  CORRESPONDENCE WITH JEXTe 
LOCATION OF NODES I N  MATRIX EQe 
DUMMY e 

0 

8 

DUMMY e 

ELEMENT NAMES. 
ELEMENT TYPE. 
ELEMENT PROPERTIES. 
NODE INCIDENCE ON ELEMENTS. 
ELEMENT LOADS. 
ELEMENT INCIDENCE ON NODES. 
INDICATOR FOR U N I F a  EL. PROPEl iTIESe 
NODE PROPERTIES, 
DUMMY c . 

0 

DUMMY o 

TOTAL NO. OF ELEMENTS. 
NOm OF A C T I V E  ELEMENTS* 
SYMMETRY INDICATORa 
GENERAL INDJCATORo 
STANDARD YOUNG'S MODULUSa 
STANDARD SHEAR MODULUS. 
STANDARD COEFo OF THERMAL EXPANSION. 
STANDARD DENSITY, 
STANDARD POISSON'S RATIO. 
DUMMY 0 

DUMMY e 

DUMMY e 
DUMMY 0 

ELEMENT STIFFNESS, 
NODAL DISPLACEMENTS. 
OUTPUT VALUES AT NODES. 
OUTPUT VALUES OF ELEMENTS* 
PROPERTIES OF GRID LINES.  
CODE FOR OUTPUT@ 
G R I D  PATTERN OF NODES* 
TEMPORARY ARRAY FOR PARTICULAR SOL. 
INDICATOR FOR DEBUGGING. 
PROBLEW PHASE INDICATOR. 
NO* OF CLOSED BOUNDARY CURVES* 
BOUNDARY NAMES. 
BOUNDARY CON01 TIONS. 
TEMPORARY ARRAY FOR PARTICULAR SOL, 
NODAL VALUES OF PARTICULAR SOLUTION. 
ELEMENT VALUES OF PARTICULAR SOL. 
NODAL LOAD INTENSITY,  



Re1 . D i  sp l  acement 
Name Add. Hex. Dec. Remarks 
RFORND P 5 0 8  7 E C  2 0 2 8  NODAL LOAD FORCE. 
I P R T I C  5 1 0  7 F 4  2 0 3 6  I N D I C A T O R  FOR P A R T I C U L A R  S O L U T I O N *  
I LOADN 5 1 1  7 F 8  2 0 4 0  T Y P E  O F  NODE LOAD ( I N T O  OR F O R C E ) .  
RDPOS PH 5 1 2  7 F C  2 0 4 4  BOUNDARY P O S I T I O N  O F  NODES. 

5 1 4  8 0 4  2 0 5 2  DUMMYe 
5 1 5  8 0 8  2 0 5 6  DUMMY. 

TEMOUT PH 516  8 0 C  2 0 6 0  CODE FOR TEMPORARY OUTPUT.  



APPENDBX IQ 

DATA STRUCTURE 

The definit ion and structure of the data used i n  the PLANAL System 
i s  presented i n  t h i s  appendix. A1 1 arrays defined here are  dynamic 
arrays which must appear in COMMON (as compared with dimensioned arrays) 
unless specified otherwise. Some scalar quantities i n  COMMON are  also 
defined here (others are defined in Appendix 6 ) .  The arrays and scalars 
are 1 isted alphabetically fo r  easy reference. 

Each node, element, o r  boundary of a structure has both a name 
and an external number. A name i s  used for  identification by the user 
and can be alphameric. An external number i s  an integer assigned by 
the system t o  a node, element, or boundary according t o  the order o f  

the i r  appearance in the i n p u t .  Separate se ts  of consecutive integers 
s ta r t ing  from 1 are assigned to the nodes, elements, and boundaries. 
In addition, each node i s  assigned an internal number according to  the 
position of the unknowns related to  tha t  node in the system equations. 

BDCOND Three level fu l l  word array to  s tore  the boundary conditions 
(B.C.). 
DEFINE BDCOND,l,POINTER,STEP = 1 

DEFINE BDCOND~I)  $10 ,POINTER,STEP = 10 

DEFINE BDCOND(I ,J)  ,5 ,STEP = 5 

where I = external number of a boundary; 



J = order of nodes in counter-clockwise direction around 

the boundary s tar t ing wi t h  the node specified in the 

' BOUNDARY INCIDENCE ' command. 

The boundary values to  be entered t o  the third level (indicated 

by K )  are assembled according t o  the type of boundary condition 

encountered (Table A. 1 ) . 
BDCOND(1 , J , l )  = external number (EN) of the boundary node N 

considered , 
BDCOND(I,J,2) = code fo r  stretching B.C. a t  negative side of N ,  

BDCOND(I,J,3) = code for  stretching B . C .  a t  positive side of N ,  

BDCOND(I,J,4) = code for  bending B.C.  a t  negative s ide of N ,  

BDCOND(1 ,J,5) = code for  bending B.C.  a t  positive s ide of N ,  
Boundary values (n = 3,4,. . . ,19): 

BDCOND(1 ,J,2n) = boundary value a t  negative side of N ,  

BDCOND(1 ,J ,2n+l) = boundary value a t  positive side of N .  

The code for  B.C. i s  cumulative so that  more than one B.C.  that  

ex is t  a t  a node can be indicated. The types of B .C .  are: 

(1) displacement, 

(2) s t r e s s ,  

(3)  e l a s t i c ,  

(4 )  edge beam, 

(5) mixed stretching , 
(6)  s t r a in ,  

( 7 )  function, 

(8) mixed bending, 

(9) simple support, 

(10) fixed support, 

(11) f ree ,  

(12) symmetry. 

BDID Two level double word array to  s tore  the alphameric name of a 

boundary, number o f  nodes on the boundary, and processing infor- 

mati on. 



Table A.1. Data Structure of BDCOND. 



DEFINE BDID~lYPOINTERySTEP = 1 

DEFINE BDID(1) ,3,DOUBLE 

where I i s  the external number of the boundary. 

BDID(1,l) = name of boundary, 

BDID(1,Z) = number of nodes on boundary, 

BDID(I,3) = indicator for  necessity to  re-process boundary as a 

stretching problem in an actually bending problem. 

Necessary i f  > 1 . Set i n  STHBOU. 

BDNORM Two level fu l l  word array to  s tore  boundary normals. 

DEFINE BDNORMSIBCON ,POINTER 

DEFINE BDNORM( I ) ,J 

where J = number of nodes on current boundary. 

Defined i n  HPSSLS. Constructed i f  ISSLSB a 1. 

BDPOS One level half word array t o  s tore  boundary position of nodes on 

boundary. 

DEFINE BDPOS , JEXTN ,HALF 
BDPOS(1) = boundary position, where I i s  the external number of 

a node. Defined and constructed i n  STHTCE. 

ELEXT One level half word array to  s tore  external numbers of elements. 

DEFINE ELEXT9NBELyHALF 

ELID One level double word array to  s tore  the alphameric identification 

of an element. 

DEFINE ELID,lO,DOUBLE,STEP = 10 

ELPROP Two level fu l l  word array to  s tore  element properties. 
DEFINE ELPROP910yPOINTERySTEP = 10 

DEFINE ELPROP( I )  ,13 

where I = external number of an element. 



ELPROP(1,l) = e lmen t  type name, 

ELPROP(I,2) = thickness, 
ELPROP( I ,3) = area, 
ELPROP(1 ,6) = Young ' s modulus i n x-di rect i  on, 
ELPROP(I,7) = Young's modulus i n  y-direction, 
ELPROP(I,8) = Poisson's r a t io  i n  x-direction, 
ELPROP(I,9) = Poisson's r a t io  i w y-direction , 
ELPROP(I,lO) = coefft .  of therm. exp. i n  x-direction, 
ELPROP(I,ll) = coeff t .  of them. exp. i n  y-direction, 
ELPROP( I ,I 2) = shear modulus, 
ELPROP(I,l3) = density. 

ELSTMT Three level f u l l  word array to  s tore  the lower elements of the 
local s t i f fness  matrix of each element. 
DEFINE ELSTMT,NBEL ,6 ,JF*JF 

A typical element i s  ELSTMT(1 ,J,K) . The external number of: an 
element i s  indicated by I .  The 6x6 element s t i f fness  matrix of 
each element I i s  partitioned by nodes. Because of symetry,  
only the lower submatrices numbered (indicated by J )  are  stored: 

The matrix elements of each submatrix J a re  stored i n  the follow- 
i n g  order (indicated by K )  : 

The structure of ELSTMT for  each element I can be sumarized by 
indicating the l a s t  two subscripts of the matrix elements 
in the i r  positions i n  the element s t i f fness  matrix: 



ELTOP Two level half word array to  s tore node incidence on the elements. 
DEFINE ELTOP,103POINTER,STEP = 10 

DEFINE ELTOP(1) ,6,HALF 
where I = external number of an element. 
ELTOP( I , I )  = total  number of nodes i n  the element, 

ELTOP( I , n )  = node incidence i n  counter-cl ockwi se direction 

( n  = 2 ,  . . . , 6 ) ,  w i t h  two nodes repeated for  con- 
veni ence . 

ELTOPl Two level half word array to  s tore element incidence on the nodes. 
DEFINE ELTOPI,JEXTN,5,HALF,STEP = 5 

ELTOP1 ( I  , I )  = total  number of elements incident on a node, 
ELTOP1 ( I  , n )  = elements incident on the node (external numbers 

used), n = 2, 3, . .., 
where I = external node number. 
Def i ned and constructed i n STHTCE . 

FCMAT Three level double word array t o  store non-symmetric global 
coefficient matrix. 
DEFINE FCMAT,NJ ,5 ,POINTER,STEP = 5 

DEFINE FCMAT(1 ,J)  ,4,DOUBLE 
In FCMAT(1 ,J , K )  , the matrix elements (indicated by K )  are stored 
in the following order: 

Defi ned i n STHNAS ,HNSASS ,HNSLAS ,STHSAS . 



157 

GRID Three level half word array - to  s tore  the rectangular grid 
pattern of the nodes. External numbers of the nodes are  used 
fo r  identification. 
DEFINE GRID( I )  ,J ,K,HALF 
where I designates the axis to  which the grid l ines a re  parallel 

(1 = x,  2 = y ) ,  
J i s  the number of l ines in a direction, 
K: f i r s t  element contains the number of nodes of l i n e  J ,  

subsequent elements contain the external number of the 
nodes ordered i n  positive x- or y-direction. 

Defined in STHGRI . 

GRIDPR Three level f u l l  word array to  s tore  the properties of a g r i d  

l ine used in STHPIR. 
DEFINE GRIDPR(1 , J )  ,4 

GRIDPR(I,J,l) = type of grid l i ne ,  
GRIDPR(1 ,J ,2) = type of end condition combination, 
GRIDPR(1 ,J,3) = I-coordinate of f i r s t  node, 
GRIDPR(I,J,4) = I-coordinate of l a s t  node. 
Defined and constructed i n  STHPlR. 

IBCON Scalar - number of closed boundary curves bounding the plate.  

ID Scalar - indicator for  problem type. 

10: plate stretching, 
11 : plate bending , 
12: general. 

IDUMP Scalar - indicator for  intermediate output. 



ICUINT Two leve l  h a l f  word array - an inverse use o f  ICUREL. 

DEFINE ICUINTYNSOL,5,HALF,STEP = 5 

ICUINT(1 , I )  = the hyper-column posi t i o n  K a t  which hyper-row I 

i n  the banded region* o f  g lobal  s t i f f n e s s  mat r i x  

s t a r t s ,  

ICUINT(1 ,n) = pos i t i on  o f  submatrix(1 ,J) o f  the global  s t i f f n e s s  

mat r i x  i n  FCMAT(I), n = 2, 3, ..., 
where (k-1) + (n-1) = J. 

Defined and i n i t i a l i z e d  i n  STHNSL. 

* The banded region i s  def ined such t h a t  the 

f i r s t  ent ry  (column pos i t i on )  o f  any row 

cannot be greater  than t h a t  o f  any subsequent 

row. This s i t u a t i o n  i s  shown i n  the diagram. 

ICUREL Two l eve l  h a l f  word array t o  contain informat ion on the row 

s t ruc tu re  o f  the non-symmetric g lobal  c o e f f i c i e n t  mat r ix .  

DEFINE ICUREL,NJY5,HALF,STEP = 5 

ICUREL(1,l) = number o f  non-zero submatrices i n hyper-row I, 

ICUREL(1 ,n) = pos i t i on  (hyper-column number) o f  FCMAT(1 ,n-1) 

i n  the global  s t i f f ness  matr ix ,  where n = 2, 3, . . . . 
Defined and i n i t i a l i z e d  i n  STHNAS. 

IDLDND One l eve l  h a l f  word array t o  contain external  number o f  nodes a t  

which loads are spec i f i ed  when special loading appl ies. For 

example, "planar" d i s t r i bu ted  load i s  def ined by load i n t e n s i t i e s  

a t  three nodes. 

DEFINE IDLDND $5 ,HALF ,STEP = 5 

IDLDND(1) = number o f  such "special loading" nodes, 

IDLDND(n) = external  numbers o f  these nodes, n = 2, 3, . . . . 
Defined i n  STHLOD. 



ILOADN S c a l a r  - i n d i c a t o r  f o r  type  of  load appl ied  a t  node (code is 
cumul a t i  ve) . S e t  i n  STHLOD. 
1 :  load i n t e n s i t y ,  
2: load f o r c e .  

IOFDG Two l eve l  h a l f  word a r r a y  t o  con ta in  information on t h e  row 

s t r u c t u r e  of t h e  symmetric global  c o e f f i c i e n t  mat r ix .  
DEFINE IOFDG ,NJ ,G,HALF,STEP = 5 

IOFDG(1,l) = number o f  non-zero submatr ices  t o  the l e f t  of  t h e  
diagonal i n  row I ,  

IOFBG( I  ,n) = posi t i o n  (hypercolumn number) of t h e  non-zero 
submatr ices  i n  the a r r a y  KOFDG (n = 2, 3 ,  . . .). 

IPROB S c a l a r  - i n d i c a t o r  o f  problem phase. 
0: s t r e t c h i n g  problem, 

-1 : bending problem, 
2: general  problem (both s t r e t c h i n g  and bending).  

IPRTIC S c a l a r  - i n d i c a t o r  of  t h e  type  o f  p a r t i c u l a r  bending s o l u t i o n  
s p e c i f i e d  by the user .  
0:  p a r t i c u l a r  s o l u t i o n  no t  g iven ,  
1:  nodal va lues  of p a r t i c u l a r  s o l u t i o n  s p e c i f i e d  o r  computed, 
2: a r e a  i n t e g r a l  of p a r t i c u l a r  s o l u t i o n  s p e c i f i e d  i n  PBSOLE. 
IPRTIC i s  set  t o  1  i n  STH2FS s o  t h a t  KPPRH can be computed i n  

STHBLV. 

IRELl Two l eve l  f u l l  word a r r a y  t o  con ta in  the b i t  p i c t u r e  o f  t h e  non- 
symmetric g loba l  c o e f f i c i e n t  mat r ix .  
DEFINE IREL1 ,NJ, I ,HALF 
where I  = (NJ+31)/32 
F i r s t  l eve l  denotes  the p o s i t i o n  of  a  hyper-column of global  

c o e f f i c i e n t  mat r ix  . 
Defined and i n i t i a l i z e d  i n  STHNAS. 



ISCAN Scalar - scanning mode indicator .  
1 : normal execution of programs, 
2:  execution inhibited.  

ISSLSB Scalar - indicator  f o r  the presence of simple support or  l i n e  of 
symmetry boundary condi t i  ons i n bendi ng . 
0: not present, 

>0: present. 

IUNIPR Scalar - indicator  f o r  uniformity of thickness and material prop- 
e r t i e s  i n  a l l  elements. 
0: not uniform, 

1: uniform. 

JEXT One level half word array t o  s t o r e  information f o r  location of 
nodes in the system equation. External numbers of the  nodes 

a re  used f o r  storage. Nodes a r e  assigned contiguous locations 

i n  the order of t h e i r  appearance i n  the input. Nodes w i t h o u t  

complete r e s t r a in t s  f i l l  the  array downwards s t a r t i ng  from the 
top; nodes w i t h  complete r e s t r a in t s  f i l l  the array upwards from 
the bottom. 
DEFINE JEXT,NJ ,HALF 

JEXTN Scalar - t o t a l  number of nodes i n  p la te .  

J F Scalar  - number of degrees of freedom. For the  PLANAL System, 

JF = 2.  

JINT One level half word array assembled i n  correspondence w i t h  JEXT. 
I f  the number i is stored i n  location j of JEXT, then the number 
j i s  stored i n  location i of JINT. 
DEFINE JINT,NJ,HALF 



JTID One level double word array t o  s tore the alphameric identifica- 

tion of a node. 

DEFINE JTID,10,DOUBLE9STEP = 10 

JTXYZ Two level fu l l  word array to  s tore cosrdinates of nodes. 

DEFINE JTXYZ,lO,POINTER,STEP = 10 

DEFINE JTXYZC I )  ,2 

where I = external number of node. 

JTXYZ(1,l) = x-coordi nate, 

JTXYZ( I ,2) = y-coordi nate. 

JTYP One level half word array t o  indicate the type and s tatus  of a 
node. The code i s  cumulative. 

DEFINE JTYP,lO,HALF,STEP = 10 

Before call  i ng STHTCE, boundary nodes have code of 2; a f t e r  

calling STHTCE, such nodes have code s f  4 .  After cal l  ing HSTORE, 

nodes with prescribed displacements or s t ress  functions have code 

of 2 (also updated in HPSSLS for  nodes w i t h  implied FUNCTION 

boundary condi l ion) .  

KDIAG Two level double word array to  contain the diagonal swbmatrices 

of the symetr ical  global coefficient matrix. 
DEFINE KDIAG, NSOL, JF*JF, DOUBLE 

KODOUT One level half word array t o  contain code for selective output. 

KODOUT(1) = cumulative code for element in stretching, 

KODOUT(2) = cumulative code for  element in bending, 

KODOUT(3) = cumulative code for node in stretching, 

KODOUT(4) = cumulative code for  node in bending, 

KODOUT(5) = 1234, i f  output a t  elements i s  required, 

KODOUT(6) = 1234, i f  output a t  nodes i s  required. 

Defined in STHOUT. 



KOFDG Three l e v e l  double word ar ray  - t o  conta in  the  non-zero lower 

h a l f  o f f -d iagonal  submatrices o f  the  g loba l  s t i f f n e s s  ma t r i x .  

DEFINE KOFDG ,NJ ,5 ,POINTER,STEP = 5 

DEFINE KOFDG(1 'J) ,JF*JF,DOUBLE 

where I = i n t e r n a l  number o f  a  node, 

J  = order  o f  non-zero submatrix, whose p o s i t i o n  i n  the  

ma t r i x  i s  i nd i ca ted  by ar ray  IOFDG. 

KPBSLN Two l e v e l  h a l f  word ar ray  t o  conta in  in format ion  dur ing  con- 

s t r u c t i o n  o f  p a r t i c u l a r  s o l u t i o n  func t ions  i n  bending. 

DEFINE KPBSLN ,NJ 92 ,HALF 

KPBSLN ( I  ,1) = cond i t i on  i n  x - d i r e c t i o n  o f  K  
Y' 

DPBSLN(1 ,2) = cond i t i on  i n  y - d i r e c t i o n  o f  Kx. 

0: Kx o r  K  no t  computed ye t ,  
Y  

1  : Kx o r  K computed. 
Y  

Defined i n  STHBPS. 

Also def ined i n  STHlFS f o r  another temporary use. 

KPPRI Two l e v e l  double word ar ray  t o  conta in  the  r ight-hand members 

o f  the  system equations. 

DEFINE KPPRI ,NJ ,JF,DOUBLE 

LEXTN Scalar - t o t a l  number o f  loadings . 

LODTYP Scalar  - i n d i c a t o r  f o r  type o f  load ing speci f ied.  

1: load i n t e n s i t y  s p e c i f i e d  a t  each node, 

2:  l oad fo rce  s p e c i f i e d  a t  each node, 

3: uni form load i n t e n s i t y  spec i f ied ,  

4: uni form load fo rce  spec i f ied .  

Set i n  STHLOD. 

NBEL Scalar  - number o f  a c t i v e  elements. 

NBXTEL Scalar  - t o t a l  number o f  elements. 



NDPROP Two l eve l  fu l l  word a r r a y  t o  con ta in  p r o p e r t i e s  of  p l a t e  a t  
nodes. 
DEFINE NDPROP ,NJ ,6 
NDPROP(1,l) = t h i cknes s  , 
NDPROP(1,Z) = Young's modulus i n  x -d i r ec t i on ,  
NDPROP(I,3) = Young's modulus i n  y -d i r ec t i on ,  
NDPROP(I,4) = Poisson ' s  r a t i o  i n  x -d i r ec t i on ,  
NDPROP(I,5) = Poisson ' s  r a t i o  i n  y -d i r ec t i on ,  
NDPROP(1,G) = shea r  modulus. 
Defined and cons t ruc ted  i n  STHGEN only when IUNIPR = 0.  

N J S c a l a r  - number of a c t i v e  nodes. 

NLDS S c a l a r  - number of  a c t i v e  loading condi t ions .  

NLDSI Scal a r  - number o f  independent l oadi ng condi t ions  . 

NODISP Two l eve l  f u l l  word a r r a y  t o  s t o r e  t h e  computed nodal va lues  
of displacements  o r  stress func t ions .  
DEFINE NODISP,JEXTN ,2 
NODISP(I,I) = U ,  

NODISP(1,Z) = V .  

where I = ex te rna l  number of a node. 

NSOL S c a l a r  - number o f  nodes a t  which displacements  o r  stress 
func t ions  a r e  no t  f u l l y  prescr ibed .  

NSYM S c a l a r  - i n d i c a t o r  f o r  symmetry of g loba l  c o e f f i c i e n t  mat r ix .  
1:  s y m e t r i c ,  

>I : non-symmetri c .  
S e t  i n  STHBOU,STHINI. 



PBNTEM Two level fu l l  word array for  temporary storage i n  constructing 

particular solution functions a t  the nodes. 

DEFINE PBNTEM,NJ 38 

PBNTEM(I,l ) = effective distance in x-di rection, 

PBNTEM(132) = effective distance i n  y-direction, 

PBNTEM(193) = Ky,xxy 

P B N T E M ( I . ~ )  = K~~~~~ 

PBNTEM(I ,5) = K 
Y , xY  

Defined in STHBPS. 

PBSOLE Two level fu l l  word array to  store the element centered values 

of the particular solution functions Kx and K 
Y 

DEFINE PBSOLE3NBXTEL ,POINTER 

DEFINE PBSOLE(1) ,2 
where I = external number of the element. 

P B S O L E ( I , ~ )  = K ~ ,  

PBsOLE(I ,2)  = Ky3 

PBSOLN Two level fu l l  word array to store nodal values of the particular 

solution functions Kx and K Nodes ordered according t o  ex- 
Y '  

ternal numbers. 

DEFINE PBSOLN, JEXTN ,POINTER 

DEFINE PBSOLN(1) ,2 

where I = external number of the node. 

PBSOLN(1,l) = K x y  



PBSOLN(I,2) = K 
Y '  

PBSOLN(I ,~ )  = K ~ , ~ ~  

PBSOLN(I,4) = K y g y 9  

Defined in STHPAR,STHlFS. 

RFORND Two level fu l l  word array t o  s tore  load forces a t  nodes. 

External numbers used for  nodes. 

DEFINE RFORND,JEXTN,3 

RFORND(1,l) = force in x-direction, 

RFORND(I,2) = force in y-direction, 

RFORND(I,3) = force in z-direction. 

Defined in STHLOD. 

RINTND Two level fu l l  word array to  s tore  load intensi t ies  a t  nodes. 

External numbers used for nodes. 

DEFINE RIMTND9JEXTN,3 

RFORND(1,l) = intensity in x-di rechion, 

RFORND(I,2) = intensity in y-direction, 

RFORND(I,3) = intensity in z-direction. 

Defined in STXLOD. 

TEMOUT One level half word array to  s tore  the parameters controll ing 

intermediate output of arrays. 

DEFINE TEMOUT,lO,HALF,STEP = 5 

TEMOUT(n) = Kn,for n = 1 , .  . . , lo.  

K , ,  ..., K I O  are defined under output and analysis commands in 

Section 5.6. 

VALUEE Two level f u l l  word array to  s tore  the output quantit ies a t  the 

elements according to  Table A.2. 

DEFINE VALUEE ,NBXTEL ,15 



VALUEN Two l eve l  f u l l  word a r r a y  t o  s t o r e  t h e  ou tput  q u a n t i t i e s  a t  t h e  

nodes according t o  Table A.2 .  
DEFINE VALUEN ,NJ ,17 

Table  A.2. Data S t r u c t u r e  of  VALUEE and VALUEN. 

1 ) St re t ch ing  problem. 
(2)  Bending problem when p a r t i c u l a r  s o l u t i o n  is  no t  involved.  
(3)  Bending problem when p a r t i c u l a r  s o l u t i o n  i s  involved. 



APPLND~X e 

LOAD MODULES DOCUMIENTATlON 

The load modules of PLANAL are documented by l is t ing the i n p u t  to  
SETGEN. SETGEN i s  one of the steps in computer operation when load 
modules are formed from source and object decks of subprograms (sub- 
routines). Input t o  SETGEN provides a l l  the required information for 
module formation. The input i s  to be punched in the f i r s t  six card 
columns, lef t- just if ied,  in the order as shown under the heading "input 
t o  SETGEN." Remarks ( n o t  t o  be punched) are added here to  describe the 
function of each input card. The remarks indicate the name and structure 
of the load module, the entry and non-entry points, and the subprograms 
w i t h  COMMON and those without. Wherever numbers are used in the input, 
a format of I2 i s  required. The functions of the load modules are also 
stated. 

STHBCM 

FUNCTION 
T H I S  MODULE I N I T I A T E S  THE MANAGEMENT OF BOUNDARY COND- 

I T I O N S .  I T  SETS UP THE RIGHT-HAND S I D E  OF THE GOVERNING 
SYSTEM OF SIMULTANEOUS EQUATIONS CONTRIBUTED BY EXTERNAL 
LOADS. 

I N P U T  TO 
SETGEN REMARKS 

NODECK 
PLANAL  NAME OF SUBSYSTEM. 
S I M P L E  STRUCTURE OF LOAD MODULE. 
STHBCM NAME OF L O A D  MODULE. 



1 

STrfBCM 
6 

HAT AN 
H P H I  
NEXNOD 
STHAVG 
STHBLV 
STHSLY 

0 
2 

AND 
LCDBLE 
**EOF 

STHREN 

NO. OF SUBPROGRAMS W I T H  COMMON, TO BE ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROG. W I T H  COMMON, TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGPAP. 
NAME OF SUCH SUPPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO. OF SUBPROG. W/O COMMON, TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 

FONCT I ON 
T H I S  MODULE CONTAINS THE D I C T I O N A R Y  SUBPROGRAM I N  PLATE 

BENDING ( $ T H B E N ) r  WHICH LEADS TO THE PROPER SUBPROGRAM I N  AN 
OVERLAY STRUCTURE THAT PROCESSES ONE OF THE BOUNDARY COND- 
I T I O N S .  

I N P U T  TO 
SETGEN REMARKS 

NODECK 
PLANAL 
S I M P L E  
STHBEN 

1 
STHBEN 

6 
HAT AN 
H P H I  
NEXNOD 
STHBDI  
STHFFB 
STHSLB 

0 
1 

AND 
+*EOF 

NAME OF SUBSYSTEM. 
STRUCTURE OF LOAD MODULE. 
NAME OF LOAD MODULE. 
NO. OF SUBPROGRAMS W I T H  COMMON, TO BE ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NOe OF SUBPROGe W I T H  COMMON, TO B E  NON-ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO. OF SUBPROG. W/O COMMON, TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAM. 



169 
STHRKS 

FUNCTION 
T H I S  MODULE I S  CALLED AFTER THE UNKNOWNS OF THE GOVERN- 

I N G  SYSTEM OF SIMULTANEOUS EQUATIONS HAVE BEEN SOLVED. 
S T R A I N S  AND STRESSES, OR STRESS COUPLES AND CURVATURES9 ARE 
THEN COMPUTED BY BACK-SUBSTITUTION.  OUTPUT SUBPROGRAMS ARE 
ALSO INCLUDED. 

I N P U T  TO 
SETGEN REMARKS 

NODECK 
PLANAL 
S I M P L E  
STHBKS 

1 
STHBKS 

6 
D E l B U G  
HCODE 
HTRANS 
H l O U T  
STHDER 
TPFORM 

0 
1 

AND 
**EOF 

NAME OF SUBSYSTEM* 
STRUCTURE OF LOAD MODULE. 
NAME OF LOAD MODULE. 
NO. OF SUBPROGRAMS W I T H  COMMON9 TO BE ENTRIES. 
NAVE OF SUCH SUBPROGRAM. 
NO. OF SUBPROGe WITH COMMON, TO BE NOW-ENTRIES. 
NAME OF SUCH SUBPROGRAMc 
NAME OF SUCH SUBPROCRAMe 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO. OF SUBPROG. W/O COMMON9 10 BE NON-ENIRIESe 
NAME OF SUCH SUBPROGRAM. 

S T H B l S  

FUNCTION 
T H I S  MODULE I S  A CONTINUATION OF STHBKSe 

I N P U T  TO 
SETGEN REMARKS 

NODECK 
PLANAL 
S I M P L E  
S T H B l S  
1 

S T H B l S  
9 

DEZBUG 
DE3BUG 
HANGLE 
HAT AN 

NAME OF SUBSYSTEM. 
STRUCTURE OF LOAD MODULE. 
NAME OF LOAD MODULE. 
NO. OF SUBPROGRAMS W I T H  COMMON, TO BE ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROG. WITH COMMON, TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 



HELEMT 
HNSTAN 
HNSTES 
H20UT 
H30UT 

0 
0 

**EOF 
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NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROCRAW. 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAMe 
NO. OF SUBPROGRAMS W/O COMMON9 TO BE ENTRIES. 
NO. O F  SUBPROGe W/O COMMON9 TO BE NON-ENTRIES. 

FUNCTION 
T H I S  MODULE GENERATES THE LOCAL C O E F F I C I E N T  MATRICES 

( S T I F F N E S S / F L E X I B I L I T Y  M A T R I C E S )  BFFORE THE MATRIX  FOR THE 
E N T I R E  SYSTEM I S  ASSEMBLED. 

INPUT TO 
SETGEFd REMARKS 

NODECK 
PLANAL 
S I M P L E  
STHGEM 

2 
STHGEN 
STHSEP 

2 
HDUAL 
STHESM 

0 
0 

**EOF 

NAME OF SUBSYSTEM. 
STRUCTURE OF LOAD MODULE. 
NAME OF LOAD MODULE. 
NO. OF SUBPROGRAMS W I T H  COMMON* TO BE ENTRIES, 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAMe 
NO. OF SUBPROG. W I T H  COMMON, TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO. OF SUBPROG. W/O COMMON, 1 0  BE NON-ENtR IEbe  

FUNCT YON 
T H I S  MODULE CONTAINS THE SUBPROGRAMS THAT I N I T I A L I Z E  

THE PLANAL SYSTEM. 

I N P U T  TO 
SETGEN REMARKS 

NODECK 
PLANAL NAME OF SUBSYSTEM. 
S I M P L E  STRUCTURE OF LOAD MODULE. 



S T H I N I  
6 

S T H I N I  
STHBOU 
STHLOD 
STHOUT 
STHTCE 
STHTRA 

2 
GETNOS 
HSTORE 

0 
3 

AND 
LCDBLE 
SETCLK 
**EOF 

NAME OF LOAD MODULE. 
NO. OF SUBPROGRAMS W I T H  COMMON9 TO BE ENTRIES. 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROCRAMe 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAM* 
NO. OF SUBPROGO W I l H  COMMON, I 0  B E  NON-ENIR IEbe  
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NOe OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO. OF SUBPROG. W/O COMMON, TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAM* 

STHMAI  

FUNCTION 
T H I S  MODULE CONTAINS THE SUBPROGRAM THAT I S  THE W A I N 9  

PROGRAM OF THE SYSTEM. EXECUTION OF OTHER LOAD MODULES I S  
CONTROLLED BY THE WAINORROCRAM.  

I N P U T  TO 
SETGEN REMARKS 

NODECK 
PLANAL 
S I M P L E  
STHMAI 
1 

STHMAI 
8 

HATAN 
HCLOCK 
HPSSLS 
NEXNOD 
STHCHK 
STHGRI 
STHRBD 
STHTMO 

0 
2 

AND 
SETCLK 
**EOF 

NAME OF SUBSYSTEM. 
STRUCTURE OF LOAD MODULE. 
NAME OF LOAD MODULE. 
NO. OF SUBPROGRAMS WITH COMMON, TO BE ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROG. W I T H  COMMON, T O  BE NON-ENTRIES* 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAMe 
NAVE OF SUCH SUBPROGRAM* 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO* OF SUBPROGe W/O COMMON9 TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAM. 



S T H N A S  

F U N C T I O N  
T H I S  MODULE A S S E M B L E S  T H E  C O E F F I C I E N T  M A T R I X  ( S T I F F -  

N E S S / F L E X I B I L I T Y  M A T R I X )  O F  T H E  G O V E R N I N G  S Y S T E M  O F  S I M U L -  
T A N E O U S  E Q U A T I O N S  WHEN T H E  M A T R I X  I S  NON-SYMMETRIC,  

I N P U T  TO 
S E T G E N  REMARKS 

NODECK 
P L A N A L  
S I M P L E  
S T H N A S  

1 
S T H N A S  

2 
H N S A S S  
HPOS I T 

0 
2 

B I T O N  
S E T C L K  
+*EOF 

S T H N S L  

NAME O F  SUBSYSTEM. 
S T R U C T U R E  O F  L O A D  MODULE. 
NAME O F  L O A D  MODULE. 
N O *  O F  SUBPROGRAMS W I T H  COMMON, T O  B E  E N T R I E S .  
NAME O F  SUCH SUBPROGRAM. 
N O *  O F  SUBPROG. W I T H  COMMON, T O  B E  N O N - E N T R I E S .  
NAME O F  SUCH SUBPROGRAP. 
NAME O F  SUCH SUBPROGRAM* 
NO. O F  5UBPROGRAMs w / O  COMMON* 10  B E  E N I R I E ~ .  
N O *  O F  SUBPROG. W/O COMMON, T O  B E  N O N - E N T R I E S .  
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 

F U N C T I O N  
T H I S  MODULE S O L V E S  T H E  S Y S T E M  O F  S I M U L T A N E O U S  E Q U A T I O N S  

I N  T H E  N O N - S Y M M E T R I C  CASE. 

I N P U T  T O  
S E T G E N  REMARKS 

NODECK 
P L A N A L  
S I M P L E  
S T H N S L  

1 
S T H N S L  

9 
HDEBUG 
HGAUBK 
H G A U S S  
H I N T E R  
H N S L A S  
H N S L S A  
MATMUL 
P P T S U B  

NAME O F  SUBSYSTEM. 
S T R U C T U R E  O F  L O A D  MODULE. 
NAME O F  L O A D  MODULE. 
N O *  O F  SUBPROGRAMS W I T H  COMMON, T O  B E  E N T R I E S .  
NAME O F  SUCH SUBPROGRAM. 
NO. O F  SUBPROG. W I T H  COMMON, T O  B E  NON-ENTRIES.  
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAM. 

" NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 



0 NO. OF SUBPROGRAMS W/O COMMON9 TO BE ENTRIES. 
1 NO. OF SUBPROG. W/O COMMON9 TO BE NON-ENTRIES. 

SETCLK NAME OF SUCH SUBPROGPAMc 
**EOF 

STHPAR 

FUNCTION 
T H I S  MODULE PROCESSES THE INPUT OR CONSTRUCTlON OF A 

PARTICULAR SOLUTION I N  THE BENDING PROBLEMe 

INPUT TO 
SETGEN REMARKS 

NODECK 
PLANAL 
S I M P L E  
STHPAR 
2 

STHPAR 
STHBPS 

4 
H I N T E G  
INTGRT 
I NTPOL 
NEXNOD 

0 
2 

AND 
LCDBLE 
**EOF 

NAME OF SUBSYSTEM. 
STRUCTURE OF LOAD MODULE* 
NAME O F  LOAD MODULEa 
NO* OF SUBPROGRAMS WITH COMMON, TO BE ENTRIES. 
NAME OF SUCH SUBPROGRAMs 
NAME OF SUCH SUBPROGRAMa 
NO. OF SUBPROGa W I T H  COMMON, TO BE NON-ENTRIES* 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGPAMc 
NAME OF SUCH SUBPROGRAMe 
NAME OF SUCH SUBPROGRAM, 
NO. OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO. OF SUBPROG* W/O COMMON, TO BE NON-ENIRIES. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 

STHP l R  

FUNCTION 
T H I S  MODULE I S  A CONTINUATION OF STHPARa 

I N P U T  TO 
SETGEN REMARKS 

NODECK 
PLANAL NAME OF SUBSYSTEM. 
S I M P L E  STRUCTURE OF LOAD MODULE. 
S T H P l R  NAME OF LOAD MODULE. 

1 NO. O F  SUBPROGRAMS W I T H  COMMON, TO BE ENTRIES. 



S T H P l R  
5 

HATAN 
H D I S L D  
H 9 I S T  
HTHETA 
NEXNOD 
0 
1 

AND 
**EOF 

NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROG. W I T H  COMMON, TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAMo 
NAME OF SUCH SUBPROGRAM0 
NAME OF SUCH SUBPROGRAM. 
NO0 OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO. OF SUBPROG. W/O COMMON, TO BE NONdENTRIESe 
NAME OF SUCH SUBPROGRAM. 

FUNCTION 
T H I S  MODULE TRANSFERS SUBMATRICES OF THE C O E F F I C I E N T  

MATRIX OF THE GOVERNING EQUATIONS TO LOCAL ARRAYS, AND V I C E  
VERSA, FOR EASE OF M O D I F I C A T I O N o  

I N P U T  TO 
SETGEN REMARKS 

NODECK 
PLANAL 
S I M P L E  
STHSAS 

2 
STHSAS 
STHSSA 

0 
0 
1 

B I TON 
* * € O F  

NAME OF SUBSYSTEM. 
STRUCTURE OF LOAD MODULE* 
NAME OF LOAD MODULE. 
NO. OF SUBPROGRAMS W I T H  COMMON, TO BE ENTRIES. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NO. OF SUBPROG. W I T H  COMMON, TO BE NON-ENTRIES. 
NO. OF SUBPROGRAMS W/O COMMON, TO BE ENTRIES. 
NO. O F  SUBPROG. W/O COMMON, TO BE NON-ENTRIES. 
NAME OF SUCH SUBPROGRAM0 

STHSTR 

FUNCTION 
T H I S  MODULE CONTAINS THE D I C T I O N A R Y  SUBPROGRAM I N  PLATE 

STRETCHING ( S T H S T R ) ,  WHICH LEADS TO THE PROPER SUBPROGRAM I N  
AN OVERLAY STRUCTURE THAT PROCESSES ONE OF THE BOUNDARY 
CONDITIONS.  

I N P U T  TO 
SETGEN REMARKS 



NODECK 
P L A N A L  NAME O F  S U B S Y S T E M .  
O V E R L A Y  S T R U C T U R E  O F  L O A D  MODULE.  
S T H S T R  NAME O F  L O A D  MODULE.  
1 NO. O F  SUBPROGRAMS W I T H  COMMON, T O  B E  E N T R I E S .  

S T H S T R  NAME O F  S U C H  S U B P R O G R A M *  
0 NO. O F  SUBPROG. W I T H  COMMON, T O  B E  N O N - E N T R I E S .  
0 NO. O F  SUBPROGRAMS W/O COMMON, T O  B E  E N T R I E S .  
2 NO. O F  SUBPROGO W / O  COMMON, T O  B E  N O N - E N T R I E S .  

A N D  N A M E  O F  S U C H  S U B P R O G R A M *  
B I T O N  N A M E  O F  S U C H  SUBPROGRAM. 
1 NO. O F  R E G I O N S  I N  O V E R L A Y  S T R U C T U R E .  

R E G I O N  1 I N D I C A T E S  S T A R T  O F  R E G I O N .  
O V E R L A Y  B E T A  I N D I C A T E S  S T A R T  O F  SEGMENT.  
S D I  S P L  N A M E  O F  T H E  E N T R Y  T O  SEGMENT, 

1 NO. O F  SUBPROGRAMS W I T H  COMMON. 
S D I S P L  NAME O F  S U C H  SUBPROGRAM. 

0 NO. O F  SUBPROGRAMS W/O COMMON. 
O V E R L A Y  B E T A  I N D I C A T E S  S T A R T  O F  S E G M E N I .  
S E D G E B  NAME O F  T H E  E N T R Y  T O  SEGMENT.  

2 NO. O F  SUBPROGRAMS W I T H  COMMON. 
S E D G E B  NAME O F  S U C H  SUBPROGRAM. 
S T I F E D  NAME O F  S U C H  SUBPROGRAM. 

0 NO. O F  SUBPROGRAMS W/O COMMON. 
O V E R L A Y  B E T A  I N D I C A T E S  S T A R T  O F  SEGMENT.  
S E L A S T  NAME O F  T H E  E N T R Y  T O  S E G M E N T *  

1 NO. O F  SUBPROGRAMS W I T H  COMMON. 
S E L A S T  NAME O F  S U C H  SUBPROGRAM. 

0 N O *  O F  SUBPROGRAMS W/O COMMON. 
O V E R L A Y  B E T A  I N D I C A T E S  S T A R T  O F  S E G M E N T *  
S M I X E D  NAME O F  T H E  E N T R Y  T O  SEGMENT.  

2 NO. O F  SUBPROGRAMS W I T H  COMMON. 
S M I X E D  N A M E  O F  S U C H  SUBPROGRAM. 
E N D M I X  NAME OF S U C H  SUBPROGRAM. 

0 NO. O F  SUBPROGRAMS W/O COMMON* 
O V E R L A Y  B E T A  I N D I C A T E S  S T A R T  O F  SEGMENT.  
S S T R E S  NAME O F  T H E  E N T R Y  T O  S E G M E N T s  

1 NO. O F  SUBPROGRAMS W I T H  COMMON. 
S S T R E S  NAME O F  S U C H  S U B P R O G R A M *  
0 NO. O F  SUBPROGRAMS W/O COMMON. 

E N D  O F  O V E R L A Y  I N D I C A T E S  E N D  O F  O V E R L A Y  S T R U C T U R E .  
* + € O F  

S T H S V R  

F U N C T I O N  
T H I S  M O D U L E  S O L V E S  T H E  S Y S T E M  O F  S I M U L T A N E O U S  E Q U A T I O N S  

I N  T H E  S Y M M E T R I C  CASE.  



I N P U T  TO 
SETGFN 

NODECK 
P L A N A L  
S I M P L E  
STHSVW 

1 
S T H S V R  

8 
S T A D R S  
S T A D l S  
S T D C P Y  
STDMAD 
STDMMP 
STDMTR 
S T I V D P  
SVRBUG 

0 
2 

B I T O N  
S E T C L K  
* * E O F  

REMARKS 

NAME O F  S U B S Y S T E M e  
S T R U C T U R E  O F  L O A D  M O D U L E e  
NAME O F  L O A D  M O D U L E *  
NO. O F  SUBPROGRAMS W I T H  COMMON, T O  B E  E N T R I E S .  
NAME O F  SUCH SUBPROGRAM. 
NOe O F  SUBPROGe W I T H  COMMON, T O  BE NON-ENTRIES.  
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAMe 
NO. O F  SUBPROGRAMS W I O  COMMON, T O  B E  E N T R I E S .  
NOe O F  SUBPROG. W/O COMMON, T O  B E  N O N - E N T R I E S .  
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAM. 

S T H S l R  

F U N C T  I ON 
T H I S  MODULE I S  A C O N T I N U A T I O N  O F  L O A D  MODULE STHSTR.  

I N P U T  TO 
S E T G E N  REMARKS 

NODECK 
P L A N A L  
S I M P L E  
S T H S l R  
1 

S T H S l R  
9 

E N D S T N  
H A T  AN 
HCHECK 
H I N I T L  
H M O D I F  
H P H  I 
H R O T A T  
NEXNOD 
S T R A I N  

NAME OF S U B S Y S T E M e  
S T R U C T U R E  O F  L O A D  MODULE. 
NAME O F  L O A D  MODULEe 
NO. O F  SUBPROGRAMS W I T H  COMMON, T O  BE E N T R I E S .  
NAME O F  SUCH SUBPROGRAM. 
NOe O F  SUBPROGe W I T H  COMMON, T O  B E  N O N - E N T R I E S .  
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 
N A P E  O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAMe 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAMe 



0 
2 

AND 
B I T O N  
**FOF 

NO. O F  SUBPROGRAMS W/O COMMON9 T O  B E  E N T R I E S .  
NO. O F  SUBPROGm W/O COMMON, T O  B E  NON-ENTRIEOm 
NAME O F  SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 

S T H l F S  

F U N C T I O N  
T H I S  MODULE P R O C E S S E S  T H E  C O N S T R U C T I O N  O F  A P A R T I C U L A R  

S O L U T I O N  I N  T H E  B E N D I N G  PROBLEM B Y  S U M M A T I O N  OF A F O U R I E R  
S E R I E S .  

I N P U T  TO 
S E T G E N  R E M A R K S  

NODECK 
P L A N A L  
S I M P L E  
S T H l F S  
1 

S T H l F S  
7 

H S  I GN 
NEXNOD 
S T H C B C  
STHCON 
S T H Z F S  
S T H 3 F S  
S T H 4 F S  
0 
1 

A N D  
*+EOF 

NAME O F  SUBSYSTEM. 
S T R U C T U R E  O F  L O A D  MODULE. 
NAME O F  LOAD MODULE. 
NO. O F  SUBPROGRAMS W I T H  COMMON, TO B E  E N T R I E S e  
NAME O F  SUCH SUBPROGRAM. 
NO. O F  SUBPROGm W I T H  COMMON9 T O  B E  NONnENTRIESm 
NAME O F  SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME OF SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM* 
NAME O F  SUCH SUBPROGRAMo 
NAME O F  SUCH SUBPROGRAM. 
NAME O F  SUCH SUBPROGRAM. 
NO. O F  SUBPROGRAMS W/O COMMON, TO B E  E N T R I E S .  
NO. O F  SUBPROGm W/O COMMON, T O  B E  N O N - E N T R I E O e  
NAME OF SUCH SUBPROGRAM. 



APPENDIX F 

PROGRAM DOCUMENTATION 

I n  t h i s  appendix i s  l i s t e d  b r i e f  documentation f o r  the  subrout ines 

used i n  the PLANAL System. The names o f  a subrout ine and the  load 

module i n  which i t  res ides  are  l i s t e d  w i t h  descr ip t ion .  I n t e r n a l  l o g i c ,  

1 i nkage and c a l l  i ng sequence are  i nd i ca ted  wherever appropr iate.  A 

miss ing i t em means t h a t  the  i t em needs no d e s c r i p t i o n  o r  i s  missing. 

Name: AND. 
Load Module: Assembly language program used i n  STHBCM, STHBEN, STHBKS, 

STHINI , STHMAI , STHPAR, STHP1 R, STHSTR, STHS1 R, STH1 FS . 
Descr ip t ion :  program re tu rns  t h e  3 2 - b i t s  l o g i c a l  product  o f  i t s  two 

arguments i n  general r e g i s t e r  0. 
Length: 20 bytes. 

Name : BITON. 
Load Module: Assembly language program used i n  l oad  modules STHNAS, 

STHSAS, STHSTR, STHSVR, STHSIR. 
Desc r ip t i on  BITON turns  on b i t  N o f  WORD where N i s  counted from 1 t o  

32 l e f t  t o  r i g h t .  BITOFF tu rns  o f  b i t  N o f  WORD. IFBIT 
re tu rns  0 if b i t  N i s  o f f  and 1 i f  i t  i s  on. 

Logi c : Forms o f  c a l l i n g  sequence: 
(1) CALL BITON(WORD,N) 
(2)  CALL BITOFF(wORD,N) 
(3 )  J = IFBIT(WORD,N) 
where N = b i t  t o  be tes ted  o r  changed i n  WORD. 

WORD = f u l l  word i n  which a b i t  w i l l  be turned on o r  
o f f .  

J = v a l u e o f b i t N i n W O R D .  
Length : 136 bytes. 
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DE1 BUG. Name : 
Load Module: 
Description: 

Length: 
Call ed by: 

Name : 
Load Module: 
Description : 

Lenth : 
Cal led by: 

Name : 
Load Module: 
Description: 

Length : 
Call ed by: 

Name : 
Load Module: 
Description: 

Length 
Calls: 
Called by: 

Name : 
Load Module: 
Description: 

Length : 
Call s : 
Called by: 

Name : 
Load Module: 
Description: 

Length : 
Calls: 
Cal led by: 
Message: 

STHBKS. 
This subroutine p r in t s  out  gr id  1 ines f o r  d i f fe ren t ia t ion  
when requested. 
1084 bytes. 
STHBKS . 
DE2BUG. 
STHBlS. 
Program t o  p r in t  the moments of the homogeneous, pa r t i cu la r  
and to ta l  problems a t  the nodes. 
864 bytes. 
STHB1 S . 
DE3BUG. 
STWB1 S. 
Program t o  p r in t  the  moments of the homogeneous, pa r t i cu la r  
and t o t a l  problems of the elements. 
904 bytes. 
STHB1 S. 

ENDMIX. 
STHSTR . 
Program t o  t r e a t  the special condition a t  the ends of a 
mixed boundary portion i n  s t re tching.  
1912 bytes. 
AND. 
SMIXED. 

ENDSTN. 
STWS1 R. 
Program t o  process ends of a boundary portion w i t h  s t r a i n  
boundary condition. 
1644 bytes. 
AND. 
STRAN. 

GETNOS. 
STHINI. 
Program t o  t race  the external numbers of nodes along a 
boundary portion. 
1804 bytes. 
LCDBLE. 
STHBOU . 
Error messages issued when boundaries o r  nodes a re  not 
previously defined. 



Name : 
Load Moldul e: 
Descr ip t ion  : 

Length : 
Cal l e d  by: 

Name : 
Load Module: 
Descr ip t ion :  
Logi c: 

Length : 
Cal led  by: 

Name : 
Load Module: 
Descr ipt ion:  

Length : 
Cal ls :  
Ca l l  ed by 

Name : 
Load Module: 
Descr ipt ion:  
Length : 
Cal ls  : 
Cal led  by: 

Name : 
Load Module: 
Descr ipt ion:  
Length : 
Cal ls :  
Cal led by: 

Name : 
Load Module: 
Descr ip t ion :  
Length: 
Ca l led  by: 

Name : 
Load Module: 
Descr ip t ion  : 
Length : 
Cal ls :  
Ca l led  by: 

HANGLE. 
STHB1 S. 
Program converts an angle g iven i n  radians t o  one i n  
degrees, minutes, and seconds. 
592 bytes. 
H20UT. 

HATAN. 
STHBCM, STHBEN, STHB1S , STHP1 R. 
Program computes the  arctangent  o f  an angle. 
For a p o i n t  w i t h  g iven abscissa and ord ina te ,  t he  arctangent  
o f  the  angle swept from the  p o s i t i v e  x-axis t o  the  p o i n t  
i s  computed. The range o f  the  angle i s  from zero t o  ZIT. 
640 bytes. 
HNSTES, HELEMT, HNSTAN, STHRBD, HDHI, HTHETA. 

HCHECK. 
STHS1 R. 
Program t o  check whether a r i g i d  body displacement has 
been speci f i ed i n s t r a i  n boundary condi ti on. 
1560 bytes. 
AND, NEXNOD 
STRAIN. 

HCLOCK. 
STHMAI . 
Program f o r  t im ing  the  var ious operat ions. 
720 bytes. 
SETCLK. 
STHMAI . 
HCODE. 
STHB KS . 
Program t o  compute con t ro l  parameters f o r  s e l e c t i v e  output.  
972 bytes. 
AND. 
STHB KS . 
HDEBUG. 
STHNSL. 
Program t o  p r i n t  ou t  ICUINT when requested. 
1 088 bytes . 
HDEB1 G , HGAUSS . 
HDEB1 G. 
STHNSL. 
Program t o  p r i n t  FCMAT. 
924 bytes. 
HDEBUG, HDEB2G. 
HGAUSS . 



Name : HDEB2G.  
Load Module: STHNSL. 
Description : Program to  pr int  KPPRI. 
Length: 652 bytes. 
Calledby: HDEBlG,HGAUBK. 

Name : HDISLD. 
Load Module: STHPlR. 
Description: Program t o  d is t r ibute  load between s t r ip s  parallel t o  the 

axes in computing particular solution functions. 
Length: 31 44 bytes. 
Calls: HDIST. 
Called by: STHPlR. 

Name : HDIST. 
Load Module: STHPIR. 
Description: Program to  compute distances to  boundary. 
Length : 608 bytes. 
Called by: HDISLD. 

Name : HDUAL. 
Load Modul es : STHGEN. 
Description: Program to  perform the duality coversion of material 

properties for  the bending problem. 
Length : 620 bytes. 
Called by: STHESM. 

Name : HELEMY. 
Load Module : STHB1S. 
Description: Program to  compute s t ra ins  (moments), s t resses  (curvatures), 

and the i r  principal values a t  the elements. 
Logi c: The s t ra in  of an element i s  computed from displacements of 

the nodes. Stresses are then computed from stress-s t rain 
relations.  

Length : 4108 bytes. 
Calls: HATAM. 
Called by: HELEMT. 

Name : HGAUBK. 
Load Module: STHNSL. 
Description: Program to perform back-substitution for  unknowns a f t e r  

Gauss reduction of the non-symmetric system equations. 
Length : 1608 bytes. 
Calls: HNSLSA, WTMUL , MATSUB, HDEB2G. 
Call ed by : STHNSL. 



Name : HGAUSS . 
Load Module: STHNSL. 
Descr ipt ion:  Program t o  perform Gauss reduc t ion  of t h e  non-symmetric 

system equat i  ons . 
Length : 221 2 by tes .  
Ca l l s :  HDEBUG, HNSLSA, HINTER, MATMUL, HNSLAS, MATSUB, HDEBIG. 
Called by: STHNSL. 

Name : HINITL. 
Load Module: STHS1 R .  
Descr ipt ion:  Program i n i t i a l i z e s  a row o f  c o e f f i c i e n t  mat r ix  f o r  

modi f ica t ion .  
Length : 984 bytes .  
Ca l l s :  BITOFF, NEXNOD. 
C a l l e d b y :  STRAIN. 

Name : HINTEG. 
Load Module: STHPAR. 
Descr ipt ion:  Executive program f o r  i n t e g r a t i o n  o f  func t ion  along a 

g r i d  l i n e .  
Length : 2996 bytes .  
Ca l l s :  INTGRT, INTPOL. 

Name : HINTER. 
Load Module: STHNSL. 
Descr ipt ion:  Program t o  perform in te rchange  o f  hyper-rows when de t e r -  

minant of  diagonal submatrix is  ze ro  i n  Gauss reduc t ion  of  
non-symmetri c system equat ions .  

Length : 1376 bytes .  
Calls::  HNSLSA. 
C a l l e d b y :  HGAUSS. 

Name : HMODIF. 
Load Module : STHS1 R. 
Descr ipt ion:  Program t o  perform modi f ica t ions  i n  s t r a i n  boundary condi - 

t i o n .  
Length : 7 404 bytes .  
Links: STHSSA. 
Cal led by: STRAIN. 

Name : HNSASS. 
Load Module: STHNAS. 
Descr ipt ion:  Program t o  manage repeated o p e r a t i  on o f  assemblage and 

updating of  record.  
Length : 1480 bytes .  
Ca l l s :  BITON, HPOSIT. 
Cal led by: STHNAS. 



Name : 
Load Module: 
Descr ip t ion :  

Length : 
Cal led  by: 

Name : 
Load Module: 
Descri p t i on :  

Length: 
Cal led by: 

Name : 
Load Module: 
Descri  p t i  on: 

Logi c : 
Length : 
Cal ls :  
Ca l led  by: 

Name : 
Load Module: 
Descr ipt ion:  

Logi c : 

Length : 
Cal ls :  
Ca l led  by: 

Name : 
Load Module: 
Descr ip t ion :  

Length : 
Cal ls :  
Ca l led  by: 

Name : 
Load Module: 
Descr ip t ion :  
Length: 
Ca l led  by: 

HNSLAS . 
STHNSL. 
Program t o  t r a n s f e r  temporary submatrix t o  element o f  
non-symnetric g loba l  c o e f f i c i e n t  mat r ix .  
81 6 bytes. 
HGAUSS. 

HNSLSA. 
STHNSL . 
Program t o  t r a n s f e r  element o f  non-symmetric g loba l  
c o e f f i c i e n t  m a t r i x  t o  temporary submatrix. 
708 bytes . 
HINTER, HGAUBK, HGAUSS. 

HNSTAN . 
STHB1 S. 
This  program computes the  s t r a i n s  (moments) and t h e i r  
p r i n c i p a l  values a t  t h e  nodes. 
S t ra ins  a r e  computed by d e r i v a t i v e s  o f  the  displacements. 
2108 bytes. 
HATAN. 
STHB1 K. 

HNSTES . 
STHB1 S. 
This program computes the  stresses (curvatures)  and t h e i r  
p r i n c i p a l  values a t  the  nodes. 
Stresses are computed f rom the  s t r a i n s  through s t ress -  
s t r a i n  re1  at ions.  
2380 bytes . 
HATAN. 
STHB1 S . 
HPHI. 
STHBCM, STHBEN, STHSIR. 
Program t o  compute the  d i r e c t i o n  o f  the  outward normal 
a t  a node. 
708 bytes.  
HATAN. 
STHBLV, STHBDI, STRAIN. 

HPOSIT. 
STHNAS . 
Program t o  compute p o s i t i o n  of b i t  i n  s t r u c t u r e  of IREL1. 
420 bytes.  
HNSASS. 



Name : HPSSLS. 
Load Module: STHMAI. 
Descr ipt ion:  Program t o  process s imple suppor t  and l i n e  of symmetry 

boundary condi t ions  i n  bending . 
Logi c : I t  c o n s t r u c t s  t h e  BDNORM a r r a y  around t h e  boundary. Then 

i t  s e t s  t h e  boundary values  f o r  t h e  two cond i t i ons .  
Length : 2472 bytes .  
Ca l l s :  HATAN, AND,  NEXNOD. 
Call  ed by : STHMAI . 
Name : HROTAT . . , 

Load Module: STHSlR. 
Descr ipt ion:  Program t o  match the node wi th  prescr ibed  r o t a t i o n .  
Length : 684 bytes .  
Cal led by: STRAIN. 

Name : HSIGN. 
Load Module: STH1 FS. 
Descr ipt ion:  Function t o  compute (-l)**M. 
Length : 41 2 by tes .  
Call  ed by : STH4FS. 

Name : HSTORE. 
Load Module: STHINI. 
Descr ipt ion:  Program s t o r e s  t h e  boundary values  t o  t h e  nega t ive  and 

p o s i t i v e  s i d e s  of a boundary node. 
Length : 1 940 bytes  . 
Cal l s :  AND. 
Call ed by : STHBOU. 

Name : HTH ETA. 
Load Module: STHPIR. 
Descr ipt ion:  Program t o  compute t h e  acu t e  angle  between t h e  x-axis  and 

normal t o  a l i n e  segment. 
Length : 660 bytes .  
Ca l l s :  WATAN. 
Called by: STHPIR. 

Name: HTRANS . 
Load Modul e : STHBKS . 
Descr ip t ion :  I t  t r a n s f e r s . r e s u l t s  a f t e r  so lv ing  t h e  system equat ions  t o  

a r r a y  NODISP. I t  a l s o  t ransforms NODISP, wherever a p p l i -  
c a b l e ,  t o  global  axes.  

Logi c : For nodes with t r u l y  mixed boundary cond i t i on ,  displacements  
have t o  be transformed t o  global  axes by premul t ip ly ing  
them by t h e  o r i g i n a l  r o t a t i o n  mat r ix  t ransposed.  

Length : 1528 bytes .  
C a l l e d b y :  STHBKS. 



Name : 
Load Module: 
Description: 

Output: 
Length: 
Calls: 
Called by: 

Name : 
Load Module: 
Description: 

Length: 
Calls: 
Called by: 

Name : 
Load Module: 
Description: 

Length : 
Calls : 
Called by: 

Name : 
Load odule: 
Description: 
Length : 
Called by: 

Name : 
Load Module: 
Descri pti on: 
Length: 
Called by: 

Name : 
Load Module: 
Description: 

Length : 

Name : 
Load Module: 
Description: 
Length : 
Called by: 

HI OUT. 
STHBKS. 
Program to pr int  nodal displacements ( s t ress  functions) 
when requested 
Nodal displacements or s t ress  functions. 
856 bytes. 
AND. 
STHBKS. 

H20UT. 
STHB1 S . 
Program to r i n t  the s t ra ins  (moments), stresses 
(curvatures , and/or the i r  principal values a t  the nodes. 
3688 bytes. 

Y 
HANGLE. 
STHBlS. 

H30UT. 
STHB1 S . 
Program to  r i n t  the s t ra ins  (moments), stresses 
(curvatures , and/or the i r  principal values of the elements. 
3548 bytes. 

Y 
HANGLE. 
STHB1 S . 
INTGRT. 
STHPAR. 
Program to  perform numerical integration fo r  PBNTEM. 
876 bytes. 
HINTEG. 

INTPOL . 
STH PAR. 
Program to perform interpolation of ordinates. 
1072 bytes. 
HINTEG. 

LCDBLE. 
Ut i l i ty  program used in load modules STHBCM, STHINI, STHPAR. 
This function performs a logical comparison of two double 
precision arguments and returns as a. code: 
0 i f  arguments are  logically equivalent. 
1 i f  f i r s t  argument i s  logical ly less than the second. 
2 i f  f i r s t  argument i s  logically greater than the second. 
60 bytes. 

MATMUL. 
STHNSL. 
Program to  perform matrix multiplication. 
508 bytes. 
HGAUBK, HGAUSS. 



Name : 
Load Module: 
Descr ip t ion :  
Length : 
Cal led  by: 

Name : 
Load Module: 
Descr ip t ion :  

Length : 
Cal led  by: 

Name : 
Load Module: 
Descr ip t ion :  

Length : 
Ca l l s :  
Ca l led  by: 
Message: 

Name : 
Load Module: 
Descr ip t ion :  
Length: 
Links: 
Ca l l s :  
Ca l led  by: 

Name : 
Load Module: 
Descr ip t ion :  
Length: 
L i  nks : 
Cal ls :  
Ca l led  by: 
Messages : 

Name : 
Load Module: 

Descr ip t ion :  

Length: 

MATS UB . 
STHNSL. 
Program t o  perform m a t r i x  subt rac t ion .  
440 bytes. 
HGAUBM, HGAUSS. 

NEXNOD. 
STHBCM, STHBEN, STHS1 R, STHPAR, STHP1 R, STH1 FS. 
Funct ion t o  compute the  nex t  node along a boundary p o s i t i o n  
i n  e i t h e r  a p o s i t i v e  o r  negat ive s -d i rec t i on .  
480 bytes.  
STHBLV, STHBDI y STHFFB STHSLB , STRAIN STHBPS , STHP1 R 
STHCON . 
SDISPL. 
STHSTR. 
Program t o  process displacement boundary c o n d i t i o n  i n  
s t r e t c h i n g  . 
3780 bytes. 
AND, BITON. 
STHSTR. 
" Incons i  s t e n t  displacement v a l  ues a t  node. " 

SEDGEB. 
STHSTR . 
Program t o  process edge beam boundary i n  s t re t ch ing .  
41 00 bytes. 
STHSAS, STHSSA. 
STIFED, AND. 
STHSTR. 

SELAST. 
STHSTR. 
Program t o  process e l a s t i c  boundary cond i t i on  i n  s t re t ch ing .  
4396 bytes . 
STHSAS, STHSSA. 
AND. 
STHSTR . 
" I n c o n s i s t e n t l y  p rescr ibed support displacements a t  node." 

SETCLK. 
Assembly language program used i n  load modules STHINI, 
STHMAI , STHNAS, STHNSL , STHSVR. 
The e n t r y  p o i n t  SETCLK i n i t i a l i z e s  t i m i n g  c a l l s .  The 
e n t r y  p o i n t  GETCLK re tu rns  the  elapsed time, i n  hundredths 
o f  a second, s ince  t h e  l a s t  c a l l  t o  SETCLK. 
30 bytes. 



Name : 
Load Module: 
Description: 
Length : 
Li nks : 
Calls : 
Called by: 
Messages : 

SMIXED. 
STHSTR. 
Program to process mixed boundary condition in stretching. 
6208 bytes . 
STHSAS, STHSSA. 
AND, ENDMIX. 
STHSTR. 
Error messages will be issued when displacement components 
and angles a t  nodes are  not specified consistently. 

Name : SSTRES . 
Load Module: STHSTR. 
Description: Program to  process s t r e s s  boundary condition in stretching. 
Length : 2436 bytes. 
Calls: AND. 
Call ed by: STHSTR. 

Name : STHASS . 
Load Module: STHASS. 
Description: Executive program fo r  assembly of the symmetric global 

coefficient matrix. 
Length : 3834 bytes. 
Li nked by : STHMAI . 
Calls: SETCLKy STORSU, STADRS, STDCPY, STDMAD. 

Name : STHAVG. 
Load Module: STHBCM. 
Description: Program to compute average angle in MIXED BENDING boundary 

condition. 
Logi c : In bending problems, MIXED BENDING boundary i s  constructed 

internally fo r  simple support and l ine  of symmetry boundary 
conditions. I t  checks i f  there i s  any disagreement in 
direction fo r  s t ress  function a t  a node. The average 
direction i s  taken. 

Length: 1068 bytes. 
Calls: AND. 
Called by: STHBCM. 

Name: STHBCM. 
Load Module: STHBCM. 
Description: Executive program in modification for  boundary conditions 

and computation of load vector in system equations. 
Logi c: I t  determines whether current problem i s  stretching 

or  bending. Then i t  ca l l s  appropriate program to 
construct load vector in system equations. I t  checks 
fo r  any node w i t h  unspecified boundary condition. I t  
then loops on a1 1 the boundaries by calling a diction- 
ary program. For bending problem, some boundary condi - 
tions are processed under dual routines i n  stretching. 

Length : 3748 bytes. 
Links : STHBEN , STHSTR. 
Linked by: STHMAI. 



Cal l s :  AND, STHBLV, STHSLV , STHAVG . 
Messages : Error  messages a r e  p r in t ed  when: 

1. boundary condi t ions  f o r  some por t ion  o f  a boundary a r e  
no t  s p e c i f i e d ,  
2. i n s t a b i  1 i t y  due t o  boundary condi t ions  is de t ec t ed  ( l e s s  
than t h r e e  displacement components s p e c i f i e d  i n  s t r e t c h i n g ,  
o r  less than t h r e e  stress func t ion  components s p e c i f i e d  
i n  bending) . 

Name : STHBDI . 
Load Module: STHBEN. 
Descri p t i  on: This  program processes  t h e  d i  spl acement boundary cond i t i on  

i n  bending. 
Length : 21 72 bytes .  
Ca l l s :  AND, HPHI, NEXNOD. 
Cal led by: STHBEN. 

Name : S THBEN . 
Load Module: STHBEN. 
Descri p t ion :  Dict ionary program f o r  boundary condi t ions  i n  bending. 
Logi c : From the code f o r  boundary cond i t i ons ,  t h e  app rop r i a t e  

r o u t i n e  i s  c a l l e d .  
Length : 1272 by te s .  
Ca l l s :  STHBDI , STHSLB, STHFFB . 
Name : STHBKS. 
Load Module : STHBKS . 
Descr ip t ion :  Executive program f o r  backsubs t i t u t i on  and output  o f  

r e s u l t s .  
Length : 1552 bytes .  
L i  nks : STHB1 S . 
Linked by : STHMAI . 
Cal l s :  H1 OUT, HCODE, HTRANS , DE1 BUG, STHDER. 

Name : STHBLV. 
Load Module: STHBCM. 
Descr ip t ion :  Program t o  assemble t h e  genera l ized  nodal r o t a t i o n  vec to r  

f o r  t h e  bending problem. 
Logi c : Nodal r o t a t i o n s  a r e  computed from the p a r t i c u l a r  s o l u t i o n  

func t ions .  A number o f  computation r o u t i n e s  a r e  used. 
Length : 4596 by te s .  ' 

Cal l s :  HPHI , NEXNOD. 
Call  ed by : STHBCM. 

Name : STHBOU. 
Load Module: STHINI. 
Descr ipt ion:  Boundary va lues  a r e  s t o r e d  by program i n to  BDCOND according 

t o  boundary condi t i  on i nvol ved . 
Length : 3200 bytes .  
Ca l l s :  GETNOS, HSTORE. 



Name : 
Load Module: 
Description: 

Length : 
Links : 
Calls : 

Name : 
Load Module: 
Description: 

Length: 
Li nked by: 
Calls: 

Name : 
Load Module: 
Description: 

Length: 
Calls : 
Called by: 

Name : 
Load Module: 
Description: 

Logi c : 
Length : 
Calls : 
Called by: 

Name : 
Load Module: 
Description: 

Length : 
Calls : 
Called by: 

Name : 
Load Module: 
Description: 

Logi c : 

Length : 
Calls: 
Called by: 

STHBPS. 
STHPAR. 
Executive program to compute particular solution functions 
by double integration. 
641 6 bytes. 
STHP1 R .  
AND,  HINTEG, NEXNOD. 

STHB 1 S . 
STHB1 S. 
I t  i s  a continuation of STHBKS. I t  i s  the executive pro- 
gram for  computing the s t rains  and s t resses  of the nodes 
and elements. 
1032 bytes. 
STHBKS. 
HZOUT, H30UT, HNSTAN, MNSIES, DEZBUG, HELEMT, DE3BUG. 

STHCBC. 
STH1 FS. 
Program to modify boundary conditions of plate under con- 
centrated load applied a t  center. 
2108 bytes. 
AND. 
STHCON. 

STHCHK. 
STHMAI . 
Program to  check loading and s tatus  of each node a f t e r  
input. 
I t  constructs JEXT, JINT when no error  i s  detected. 
2224 bytes. 
AND. 
STHMAI . 
STHCON . 
STH1 FS . 
Executive program for  modifying boundary conditions of 
plate under concentrated load applied a t  center. 
2228 bytes. 
AND, STHCBC, NEXNOD. 
STH1 FS. 

STHDER. 
STHBKS. 
Program to  compute a t  each node derivatives of the solved 
unknowns of the system equations. 
Computation i s  carried out by three-point formulas or  
divided differences, processed along grid 1 i nes para1 le l  
t o  the global axes. 
2232 bytes. 
TPFORM. 
STHBKS . 



Name : STHESM . 
Load Module: STHGEN. 
Description: Program to  compute the diagonal and lower half of the 

element local coefficient matrices. For the bending 
problem, i t  ca l l s  HDUAL to  perform the duality conversion 
of materi a1 properties . 

Length : 1216 bytes. 
Calls: HDUAL. 
Cal led by: STHGEN. 

Name : STHFFB . 
Load Module: STHBEN. 
Description: This program processes the fixed support or f ree  boundary 

condi t i  ons i n  bending . 
Logi c : The equivalent displacement or s t ress  boundary conditions 

are specified. 
Length : 1232 bytes. 
Calls: AND, NEXNOD.  
Called by: STHBEN. 

Name : STHGEN . 
Load Module: STHGEN. 
Description: Executive program for  generation of local coefficient 

matrices of elements. I t  also constructs NDPROP when 
necessary. 

Length : 3656 bytes. 
Li n ked by : STHMAI . 
Calls: STHESM. 
Messages : Error messages issued when: 

1. el ement not of type ' CST' . 
2. element of zero thickness. 

Name : STHGRI . 
Load Module: STHMAI. 
Description: Program constructs the rectangular grid pattern of the 

nodes for  differentiations of the f inal  variables. 
Logic: The grid pattern i s  formed as l ines parallel to  the axes 

by comparing nodal coordinates. 
Length : 1848 bytes. 
Called by: STHMAI. 

Name : STHINI. 
Load Module: STHINI. 
Description: Program to  i n i t i a l i z e  BDID, BDCOND, and IPROB. 
Length : 780 bytes. 
Messages : "Command valid only fo r  plate stretching and bending." 



Name : STHLOD 
Load Module: STHINI. 
Descri ption: Program inputs external loading to  the sys tem. 
Logic: Routines are  written for  load intensity and forces for  

uniform and non-uniform cases. 
Length : 2984 bytes. 
Calls: LCDBLE. 

Name : STHMAI . 
Load Module: STHMAI . 
Description: The main program of the PLANAL System. 
Logic : Depending on the symmetry of the coefficient matrix, the 

proper assembler and solver a re  called. Programs for  
constructing particular solution functions in bending and 
routines fo r  temporary output are a1 so control l ed. 

Length : 3484 bytes. 
Li nks : STHNAS STHNSL STHASS STHSVR STHGEN STHBKS STHBCM, 

STH1 FS. 
Calls: HPSSLS, STHRBD, HCLOCK, STHCHK, STHGRI, STHTMO. 

Name : STHNAS. 
Load Module: STHNAS. 
Description: Program t o  assemble the non-smmetric global coefficient 

matrix. 
Length : 1740 bytes. 
Linkedby: STHMAI. 
Calls: SETCLK, HNSASS. 

Name : STHNSL. 
Load Module: STHNSL. 
Description: Program to  prepare for  so ution of non-symmetric system 

equations . 
Length : 1 428 bytes. 
Linked by: STHMAI. 
Calls: SETCL K ,  HGAUSS , HGAUBK. 

Name : STHOUT. 
Load Module: STHINI. 
Description: Program transfers information from Command 'OUTPUT4 

t o  KODOUT. 
Length : 656 bytes. 

Name : STHPAR. 
Load Module: STHPAR. 
Description: Program to  s tore  input of particular solution functions in 

bending . 
Length : 191 2 bytes. 
Calls : LCDBLE. 



Name : 
Load Module: 
Description : 

Length : 
Linked by: 
Calls: 

Name : 
Load Module: 
Description: 

Logic : 

Length : 
Calls : 
Called by: 

Name : 
Load Module : 
Description: 

Length : 
Linked by: 
Cal 1s : 

Name : 
Load Module: 
Description: 
Length: 

Name : 
Load Plodul e: 
Descri pti on: 

Logi c: 
Length : 
Calls: 
Called by: 

Name : 
Load Module: 
Description: 

Logi c : 
Length : 
Calls: 
Called by: 

STHP1 R.  
STHP1 R. 
Program t o  prepare for  STHBPS by determining types of end 
conditions of a l l  grid l ines .  
4360 bytes. 
STHBPS . 
AND, NEXNOD, HTHETA, HDISLD. 

STHRBD . 
STHMAI . 
This program checks i f  a quantity in bending dual of a 
rigid body displacement has been supplied. If not, one 
would be specified. 
When a l l  boundary nodes are  f ree  or fixed, two s t ress  
functions and one "rotation" will be specified. When 
there i s  simple support or l ine  of symmetry b u t  there i s  
no node with constructed function boundary condition, 
two s t r e s s  functions are  specified. 
3244 bytes. 
A N D ,  HATAN, NEXNOD.  
STHMAI . 
STHSAS . 
STHSAS . 
Program to  transfer temporary submatrix t o  element of 
global matrix. 
1520 bytes. 
SMIXED, SEDGEB, SELAST, STRAIN. 
BITON. 

STHSEP. 
STHGEN. 
Program to s tore  element properties . 
1344 bytes. 

STHS LB . 
STHBEN. 
This program processes the simple or  l ine  of symnetry 
boundary condi ti ons in bendi ng . 
The equivalent mixed bending boundary condition i s  specified. 
1536 bytes. . 
AND, NEXNOD. 
STHBEN . 
STHSLV . 
STHBCM. 
Program t o  assemble the generalized load vector for  the 
stretching problem. 
Load vector i s  computed from the externally applied loads. 
1872 bytes. 
AND 
STHBCM. 



Name : STHSSA. 
Load Modul e : STHSAS . 
D e s c r i p t i o n :  Program t o  t r a n s f e r  e l ement  o f  g l o b a l  m a t r i x  t o  temporary  

s u b m a t r i x .  
Length : 1352 b y t e s .  
Linked by: SMIXED, SEDGEB, SELAST, HMODIF, STRAIN. 
C a l l s :  BITON. 

Name : STHSTR. 
Load Module: STHSTR. 
D e s c r i p t i o n :  D i c t i o n a r y  program t o  branch t o  t h e  a p p r o p r i a t e  program 

f o r  p r o c e s s i n g  t h e  s t r e t c h i n g  boundary c o n d i t i o n s  . 
Length: 956 b y t e s .  
Links:  STHSlR. 
Linked by: STHBCM. 
C a l l s  : SDISPL, SSTRESS, SELAST, SEDGEB, SMIXED. 

Name : STHSVR. 
Load Module: SYWSVR. 
D e s c r i p t i o n :  Execu t ive  program t o  s o l v e  t h e  symmetric sys tem e q u a t i o n s .  
Length : 7588 b y t e s .  
Linked by: STHMAI . 
C a l l s :  SETCLK, STDCPY, STIVDP, STADRS, STDMMP, STDMTR, STDMAD, 

SVRBaJG. 

Name : STHS1 R .  
Load Module: STHSlR. 
D e s c r i p t i o n :  C o n t i n u a t i o n  program o f  STHSTR. 
Length : 528 b y t e s .  
Linked by: STHSTR. 
C a l l s :  STRAIN. 

Name : STHTCE. 
Load Module: SIHINI. 
D e s c r i p t i o n :  Program t r a c e s  t h e  c h a i n  o f  boundary nodes i n  t h e  p o s i t i v e  

s - d i r e c t i o n .  
Logic:  The c h a i n  i s  formed by examining t h e  nodes f o l l o w i n g  a 

c u r r e n t  boundary node around a l l  e l ement s  i n c i d e n t  on t h a t  
node. 

Length : 3892. 
C a l l s :  AND, SETCLK, LCDBLE. 
Messages: E r r o r  messages a r e  i s s u e d  when boundary c h a i n  c a n n o t  be  

formed because  o f  i n p u t  e r r o r s .  

Name : STHTMO. 
Load Modul e : STHMAI . 
D e s c r i p t i o n :  Program t o  make i n t e r m e d i a t e  o u t p u t  o f  a r r a y s  when re- 

q u e s t e d .  
Length : 51 20 b y t e s .  
C a l l  ed  by : STHMAI . 



Name : 
Load Module : 
Description: 

Logi c: 
Length : 

Name : 
Load Module: 
Description: 

Length : 
Linked by: 
Calls: 

Name : 
Load Module: 
Description: 

Length : 
Calls : 
Called by: 

Name : 
Load Module: 
Descri p t i  on : 
Length : 
Calls: 
Called by: 

Name : 
Load Module: 
Description: 

Length : 
Calls : 
Called by: 

Name : 
Load Module: 
Description: 

Length : 
Cal led by: 

Name : 
Load Module: 
Description: 
Length : 
Links: 
Calls: 
Called by: 

194 
STHTRA. 
STHINI, 
Program transforms an integer from integer format to  
alphameric format. 
Integer i s  converted d i g i t  by d ig i t .  
1048 bytes. 

STH1 FS. 
STH1 FS. 
Program to  check input of geometry and loading before 
construction of particular solution functions by Fourier 
ser ies .  
5956 bytes. 
STHMAI . 
AND, STHCON, STH2FS. 

STH2FS. 
STH1 FS . 
Executive program for  construction of parti  cul a r  solution 
functions by Fourier ser ies .  
4984 bytes. 
AND, STHBFS 
STH1 FS. 

STH3FS. 
STH1 Fs . 
Program to  perform actual summation of Fourier ser ies .  
431 6 bytes . 
STH4FS. 
STH2Fs . 
STH4FS. 
STH1 FS . 
Program to compute the coefficients fo r  summation by 
Fourier ser ies .  
2076 bytes. 
HSIGN. 
STHBFS. 

ST1 FED. 
STHSTR. 
Program to  compute the local s t i f fness  coefficients for  
edge beam in stretching. 
1524 bytes. 
SEDGEB. 

STRAIN . 
STHS1 R.  
Program to  process the s t r a in  boundary condition in bending. 
6252 bytes. 
STHSAS , STHSSA . 
AND, HPHI, NEXNOD, HCHECK, HROTAT, HMODIF, HINITL, ENDSTN. 
STHSl R. 



Name : 
Load Module: 
Description: 

Length : 
Called by: 

Name : 
Load Module: 
Descri ption: 
Logic: 
Length : 
Called by: 

SVRBUG. 
STHSVR. 
Proqram to  point out KPPRI during i terat ions in Gauss 
redbeti on o f  symrnetri c system equations . 
652 bytes. 
STHSVR. 

TPFORM . 
STHBKS . 
Program to  compute derivatives by a three-point formula. 
The formula used i s  selected by code in argument l i s t .  
848 bytes . 
STHDER. 



APPENDIX G 

P R O G R A M  LISTINGS 

Complete Listings of the Command Definition Blocks 
and Icetran programs used in the PLANAL System may be 
obtained upon request. 




